Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Philos Trans A Math Phys Eng Sci ; 377(2144): 20180069, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30879419

RESUMO

Fluids described by constitutive relations wherein the symmetric part of the velocity gradient is a function of the stress can be used to describe the flows of colloids and suspensions. In this paper, we consider the flow of a fluid obeying such a constitutive relation in a tube of elliptic and other non-circular cross-sections with the view towards determining the velocity field and the stresses that are generated at the boundary of the tube. As tubes are rarely perfectly circular, it is worthwhile to study the structure of the velocity field and the stresses in tubes of non-circular cross-section. After first proving that purely axial flows are possible, that is, there are no secondary flows as in the case of many viscoelastic fluids, we determine the velocity profile and the shear stresses at the boundaries. We find that the maximum shear stress is attained at the co-vertex of the ellipse. In general tubes of non-circular cross-section, the maximum shear stress occurs at the point on the boundary that is closest to the centroid of the cross-section. This article is part of the theme issue 'Rivlin's legacy in continuum mechanics and applied mathematics'.

2.
Math Mech Solids ; 23(3): 433-444, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29750008

RESUMO

The viscoelastic Kelvin-Voigt model is considered within the context of quasi-static deformations and generalized with respect to a nonlinear constitutive response within the framework of limiting small strain. We consider a solid possessing a crack subject to stress-free faces. The corresponding class of problems for strain-limiting nonlinear viscoelastic bodies with cracks is considered within a generalized formulation stated as variational equations and inequalities. Its generalized solution, relying on the space of bounded measures, is proved rigorously with the help of an elliptic regularization and a fixed-point argument.

3.
Math Mech Solids ; 22(6): 1334-1346, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29750007

RESUMO

A major drawback of the study of cracks within the context of the linearized theory of elasticity is the inconsistency that one obtains with regard to the strain at a crack tip, namely it becoming infinite. In this paper we consider the problem within the context of an elastic body that exhibits limiting small strain wherein we are not faced with such an inconsistency. We introduce the concept of a non-smooth viscosity solution which is described by generalized variational inequalities and coincides with the weak solution in the smooth case. The well-posedness is proved by the construction of an approximation problem using elliptic regularization and penalization techniques.

4.
J Biomech ; 172: 112226, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39008917

RESUMO

INTRODUCTION: Dissection or rupture of the aorta is accompanied by high mortality rates, and there is a pressing need for better prediction of these events for improved patient management and clinical outcomes. Biomechanically, these events represent a situation wherein the locally acting wall stress exceed the local tissue strength. Based on recent reports for polymers, we hypothesized that aortic tissue failure strength and stiffness are directly associated with tissue mass density. The objective of this work was to test this novel hypothesis for porcine thoracic aorta. METHODS: Three tissue specimens from freshly harvested porcine thoracic aorta were treated with either collagenase or elastase to selectively degrade structural proteins in the tissue, or with phosphate buffer saline (control). The tissue mass and volume of each specimen were measured before and after treatment to allow for density calculation, then mechanically tested to failure under uniaxial extension. RESULTS: Protease treatments resulted in statistically significant tissue density reduction (sham vs. collagenase p = 0.02 and sham vs elastase p = 0.003), which in turn was significantly and directly correlated with both ultimate tensile strength (sham vs. collagenase p = 0.02 and sham vs elastase p = 0.03) and tangent modulus (sham vs. collagenase p = 0.007 and sham vs elastase p = 0.03). CONCLUSIONS: This work demonstrates for the first time that tissue stiffness and tensile strength are directly correlated with tissue density in proteolytically-treated aorta. These findings constitute an important step towards understanding aortic tissue failure mechanisms and could potentially be leveraged for non-invasive aortic strength assessment through density measurements, which could have implications to clinical care.


Assuntos
Aorta Torácica , Resistência à Tração , Animais , Suínos , Aorta Torácica/fisiologia , Elastase Pancreática/metabolismo , Colagenases , Proteólise , Rigidez Vascular/fisiologia , Estresse Mecânico
5.
Ann Biomed Eng ; 50(4): 452-466, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35226280

RESUMO

Knowledge of the mechanical properties of blood vessels and determining appropriate constitutive relations are essential in developing methodologies for accurate prognosis of vascular diseases. We examine the directional variation of the mechanical properties of the porcine thoracic aorta by performing uniaxial extension tests on dumbbell-shaped specimens cut at five different orientations with respect to the circumferential direction of the aorta. Specimens in all the orientations considered exhibit a nonlinear constitutive response that is typical of collagenous soft tissues. Shear strain under uniaxial extension demonstrates clearly discernible anisotropy of the mechanical response of the porcine aorta, and samples oriented at 45[Formula: see text] and 60[Formula: see text] with respect to the circumferential direction show a peculiar crescent-shaped shear strain-nominal stretch response not displayed by axial and circumferential specimens. Failure stress indicates decreasing tensile strength of the porcine aortic wall from the circumferential direction to the longitudinal direction. Furthermore, we determine the material parameters for the four-fiber-family and Gasser-Holzapfel-Ogden models from the mechanical response data of the circumferential and longitudinal specimens. It is shown how the material parameters derived from the uniaxial tests on circumferential and longitudinal specimens are insufficient to characterize the response of off-axis specimens.


Assuntos
Aorta Torácica , Animais , Anisotropia , Aorta Torácica/fisiologia , Fenômenos Biomecânicos , Estresse Mecânico , Suínos , Resistência à Tração
6.
J Elast ; 144(1): 107-118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720361

RESUMO

We study some mathematical properties of a novel implicit constitutive relation wherein the stress and the linearized strain appear linearly that has been recently put into place to describe elastic response of porous metals as well as materials such as rocks and concrete. In the corresponding mixed variational formulation the displacement, the deviatoric and spherical stress are three independent fields. To treat well-posedness of the quasi-linear elliptic problem, we rely on the one-parameter dependence, regularization of the linear-fractional singularity by thresholding, and applying the Browder-Minty existence theorem for the regularized problem. An analytical solution to the nonlinear problem under constant compression/extension is presented.

7.
Aorta (Stamford) ; 8(4): 91-97, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33307588

RESUMO

The aorta is a very complex organ comprising three layers, consisting of four kinds of tissues. It is an anisotropic, inhomogeneous, multiconstituent, and living organ that presents both a formidable challenge and a tremendous opportunity to a modeler to mathematically characterize its structure. Unfortunately, even the most sophisticated models in vogue do not faithfully take into consideration its various complexities, falling very short of putting into place a reasonable model, as they ignore many of the quintessential features that need to be taken into account. In this article, we address the various features that need to be taken into account to develop a meaningful model of the aorta.

10.
Biomech Model Mechanobiol ; 9(2): 177-86, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19680702

RESUMO

A thermodynamically consistent framework for describing the response of materials undergoing deformation-induced degradation is developed and applied to a particular biodegradable polymer system. In the current case, energy is dissipated through the mechanism of hydrolytic degradation and its effects are incorporated in the constitutive model by appropriately stipulating the forms for the rate of dissipation and for the degradation-dependent Helmholtz potential which changes with the extent of the degradation of the material. When degradation does not occur, the response of the material follows the response of a power-law generalized neo-Hookean material that fits the response of the non-degraded poly(L: -lactic acid) under uniaxial extension. We study the inflation and extension of a degrading cylindrical annulus and the influence of the deformation on the mechanism of degradation and its consequent mechanical response. Depreciation of mechanical properties due to degradation confers time-dependent characteristics to the response of the biodegradable material: the material creeps when subjected to constant loads and stresses necessary to keep a fixed deformation relax.


Assuntos
Implantes Absorvíveis , Materiais Biocompatíveis/química , Ácido Láctico/química , Modelos Químicos , Polímeros/química , Simulação por Computador , Módulo de Elasticidade , Dureza , Hidrólise , Poliésteres , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA