Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 319
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(45): e202401077, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38845585

RESUMO

P-chiral supramolecular phosphine ligands are crucial for asymmetric transformations, but their synthesis is tedious. We report a one-step synthesis of thermally stable P-chiral supramolecular phosphines and their performance in the asymmetric hydrogenation of functionalized alkenes. A rational designing and synthesis of (R, R)-QuinoxP* ligated palladium complex (Pd-2) in excellent yield is reported. This Pd-2 catalyzed a direct P-C coupling of 2,3-dihydro-1-H-phosphindole (A1)/1,2,3,4-tetrahydrophosphindoline (A2) with 1-(3-iodophenyl)urea (B1)/2-iodo /6-hydroxy pyridine (B2) and,produced corresponding ligands L1-L3. The P-C coupling between A1 and B2 produced 6-(2,3-dihydro-1H-phosphindol-1-yl)pyridine-2(1H)-one (L2) with an excellent enantiomeric excess of up to 99 %. L2 was found to be remarkably stable even at 150 °C and did not oxidize/hydrolyze for at least 24 hours in open air. Such thermal stability and an impediment to oxidation are unprecedented. L2 self-assembled and produced L2-C1 (Pt), L2-C2(Pd), and L2-C3(Rh) assemblies. The utility of the self-assembled P-chiral ligand was demonstrated in the Rh-catalyzed asymmetric hydrogenation (AH) of functionalized olefins. The L2-C3 catalyzed AH of functionalized alkenes and delivered chiral products with excellent enantioselectivity of >99 %. A small library of 16 substrates was subjected to AH using L2-C3 to produce chiral compounds with excellent conversion and ee.

2.
Chemistry ; 30(12): e202303957, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38051591

RESUMO

The reaction of a nickel(II) chloride complex containing a tridentate ß-diketiminato ligand with a picolyl group [2,6-iPr2 -C6 H3 NC(Me)CHC(Me)NH(CH2 py)]Ni(II)Cl (1)] with KSi(SiMe3 )3 conveniently afforded a nickel(I) radical with a T-shaped geometry (2). The compound's metalloradical nature was confirmed through electron paramagnetic resonance (EPR) studies and its reaction with TEMPO, resulting in the formation of a highly unusual three-membered nickeloxaziridine complex (3). When reacted with disulfide and diselenide, the S-S and Se-Se bonds were cleaved, and a coupled product was formed through carbon atom of the pyridine-imine group. The nickel(I) radical activates dihydrogen at room temperature and atmospheric pressure to give the monomeric nickel hydride.

3.
Org Biomol Chem ; 22(27): 5636-5645, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38912576

RESUMO

Herein we report a transition-metal free, base-mediated 1,6-conjugate addition of aryldiazenes to para-quinone methides (p-QMs). Arylhydrazines were used for the in situ generation of aryldiazenes using a base-mediated protocol in the presence of air as the oxidant. The 1,6-conjugate addition of aryldiazenes to para-quinone methides via a radical mechanism is followed by an oxidative rearrangement to furnish the desired product, arylhydrazones. Interestingly, our synthetic protocol results in the formation of an aryldiazene radical, which undergoes 1,6-conjugate addition with p-QMs to furnish the arylhydrazones.

4.
Chemistry ; 29(48): e202301375, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37285327

RESUMO

Alkoxylation, hydrosilylative-alkoxylation, and dehydrogenative-polymerization are some of the most widely used transformations in synthetic chemistry. However, these transformations are traditionally catalyzed by precious, and rare late-transition metals. Presented here is a molecularly defined iron complex that catalyzes alkoxylation, tandem hydrosilylative-alkoxylation, and dehydrogenative polymerization of silanes under mild conditions. The iron complex [Fe(CO)4 (H)(SiPh3 )] 1 catalyzes a direct Si-O coupling reaction between an array of silanes and alcohols to produce desired alkoxysilanes in excellent yield, with H2 as the only byproduct. The iron catalyst tolerates various functional groups and provides access to 20 alkoxysilanes, including essential molecules such as ß-citronellol and cholesterol. Further, complex 1 catalyzes the polymerization of renewable diol and silane monomer to produce a renewable and degradable poly(isosorbide-silyl ether). Remarkably, complex 1 catalyzes a tandem hydrosilylative-alkoxylation of alkynes under mild conditions to yield unsaturated silyl ethers. The synthetic utility has been demonstrated by gram-scale alkoxylation and hydrosilylative-alkoxylation reactions.

5.
Chemistry ; 29(43): e202301174, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37191495

RESUMO

Chemoselective transfer hydrogenation of C=C bond in α,ß-unsaturated ketones is demonstrated at room temperature employing a manganese(I) catalyst and half an equivalent of ammonia-borane (H3 N-BH3 ). A series of mixed-donor pincer-ligated Mn(II) complexes, (tBu2 PN3 NPyz )MnX2 [κP ,κN ,κN -(N-(di-tert-butylphosphaneyl)-6-(1H-pyrazol-1-yl)pyridin-2-amine)MnX2 ] {X=Cl (Mn2), X=Br (Mn3), X=I (Mn4)} were synthesized and characterized. Amongst the Mn(II) complexes, (Mn2, Mn3, Mn4) and Mn(I) complex, (tBu2 PN3 NPyz )Mn(CO)2 Br (Mn1) screened; the Mn1 acts as an efficient catalyst for the chemoselective C=C bond reduction in α,ß-unsaturated ketones. Various synthetically important functionalities like halides, methoxy, trifluoromethyl, benzyloxy, nitro, amine, and unconjugated alkene and alkyne groups, including heteroarenes, were compatible and provided saturated ketones in excellent yields (up to 97 %). A preliminary mechanistic study highlighted the crucial role of metal-ligand (M-L) cooperation through the dearomatization-aromatization process in catalyst Mn1 for the chemoselective C=C bond transfer hydrogenation.

6.
Ann Emerg Med ; 82(3): 288-297, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36797134

RESUMO

Emergency departments (EDs) are dynamic, complex, and demanding environments. Introducing changes that lead to improvements in EDs can be challenging owing to the high staff turnover and mix, high patient volume with different needs, and being the front door to the hospital for the sickest patients. Quality improvement is a methodology applied routinely in EDs to instigate change to improve several outcomes such as waiting times, time to definitive treatment, and patient safety. Introducing the changes needed to transform the system in this way is seldom straightforward with the risk of "not seeing the forest for the trees" when attempting to change the system. In this article, we demonstrate how the functional resonance analysis method can be used to capture the experiences and perceptions of frontline staff to identify the key functions in the system (the trees), to understand the interactions and dependencies between them to make up the ED ecosystem ("the forest") and to support quality improvement planning, identifying priorities and patient safety risks.


Assuntos
Ecossistema , Melhoria de Qualidade , Humanos , Hospitais , Manipulação Ortopédica , Serviço Hospitalar de Emergência
7.
Environ Res ; 222: 115312, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709031

RESUMO

Plastic pollution is an emerging issue in recent days. Persistent plastic particles reach the atmosphere, land and water by multiple pathways. Research has confirmed that the existence of plastic particles is found surprisingly everywhere, from the Artic to the Antarctic region. The probability of ingestion of plastic by all living forms is quite natural, as the whole planet's environment is polluted with microplastic particles. The bioaccumulation of microplastics is a threat and the consequences for living beings are yet to be explored. Microplastics present in different drinking water sources like rivers, lakes, treatment units etc. are studied by several researchers, covering various aspects. Research carried out by various scientists on the microplastics in different drinking water sources is highlighted in this review. In view of the previous research carried out on various aspects of microplastic particles, the necessity of a uniform protocol for qualitative and quantitative analysis of microplastic is ascertained. Microplastic pollution is an ongoing environmental concern, it must be addressed and research should be expanded.


Assuntos
Água Potável , Poluentes Ambientais , Poluentes Químicos da Água , Microplásticos , Plásticos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
8.
Environ Res ; 216(Pt 1): 114463, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208779

RESUMO

An electrochemical sensor detection of sulfamethoxazole was performed using a copper oxide Molybdenum sulfide modified glassy carbon electrode using Molybdenum sulfide (CuO/MoS2) functionalization. As part of the characterization process, materials were characterized via cyclic voltammetry (CV), Square wave voltammetry (SWV), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and scanning electron microscopy (SEM). To optimize the performance of the experiment, parameters like the scan rate and pH, the electrolytes study, the stability, the comparative study and repeatability were optimized. In comparison to CuO, MoS2 and bare Glassy carbon electrode (GCE), an electrochemical sensor that incorporated CuO/MoS2 exhibited exceptional electrochemical performance. CuO/MoS2 modified electrodes showed a higher peak current for oxidation compared with bare, CuO and MoS2 modified electrodes, which demonstrated enhanced electrochemical conductivity for detection of SMX by minimizing oxidation potential from +0.18 V to +0.10 V. In the range of 100-800 µl SMX concentrations, the peak current linearly correlated with the concentration of SMX. In the calibration plot, the modified electrode showed linearity under ideal circumstances for SMX concentrations starting at 0.3 µM. This study investigated the presence of SMX with a detection limit of 0.34 Pg/L. CuO/MoS2 based electrochemical sensor, according to our analysis, are potentially useful in applications requiring the detection of trace amounts of SMX.


Assuntos
Cobre , Nanocompostos , Cobre/química , Molibdênio/química , Carbono/química , Sulfametoxazol , Técnicas Eletroquímicas/métodos , Nanocompostos/química , Eletrodos , Óxidos , Limite de Detecção
9.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050484

RESUMO

In conventional modern vehicles, the Internet of Things-based automotive embedded systems are used to collect various data from real-time sensors and store it in the cloud platform to perform visualization and analytics. The proposed work is to implement computer vision-aided vehicle intercommunication V2V (vehicle-to-vehicle) implemented using the Internet of Things for an autonomous vehicle. Computer vision-based driver assistance supports the vehicle to perform efficiently in critical transitions such as lane change or collision avoidance during the autonomous driving mode. In addition to this, the main work emphasizes observing multiple parameters of the In-Vehicle system such as speed, distance covered, idle time, and fuel economy by the electronic control unit are evaluated in this process. Electronic control unit through brake control module, powertrain control module, transmission control module, suspension control module, and battery management system helps to predict the nature of drive-in different terrains and also can suggest effective custom driving modes for advanced driver assistance systems. These features are implemented with the help of the vehicle-to-infrastructure protocol, which collects data through gateway nodes that can be visualized in the IoT data frame. The proposed work involves the process of analyzing and visualizing the driver-influencing factors of a modern vehicle that is in connection with the IoT cloud platform. The custom drive mode suggestion and improvisation had been completed with help of computational analytics that leads to the deployment of an over-the-air update to the vehicle embedded system upgradation for betterment in drivability. These operations are progressed through a cloud server which is the prime factor proposed in this work.

10.
J Environ Manage ; 344: 118614, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454449

RESUMO

In recent periods, a broad assortment of continual organic contaminants has been released into our natural water resources. Indeed, it is exceedingly poisonous and perilous to living things; thus, the elimination of these organic pollutants before release into the water bodies is vital. A variety of techniques have been utilized to remove these organic pollutants with advanced oxidation photocatalytic methods with zinc oxide (ZnO) nanoparticles being commonly used as a capable catalyst for contaminated water treatment. Nevertheless, its broad energy gap, which can be only stimulated under an ultraviolet (UV) light source, and high recombination pairs of electrons and holes limit their photocatalytic behaviors. However, numerous methods have been suggested to decrease its energy gap for visible regions. Including, the doping ZnO with metal ions (dopant) can be considered as an effectual route not only the reason for a movement of the absorption edges toward the higher (visible light) region but also to lower the electron-hole pair (e--h+) recombination. This review concentrated on the impact of dissimilar types of metal ions (dopants) on the advancement in the degradation performance of ZnO. So, this work demonstrates a vital review of contemporary attainments in the alteration of ZnO nanoparticles for organic pollutants eliminations. Besides, the effect of doping ions including transition metals, rare earth metals, and metal ions (substitutional and interstitial) concerning numerous types of altered ZnO are summarized. The photodegradation mechanisms for pristine and metal-modified ZnO nanoparticles are also conferred.


Assuntos
Poluentes Ambientais , Nanopartículas Metálicas , Óxido de Zinco , Zinco , Metais , Compostos Orgânicos , Corantes , Preparações Farmacêuticas , Íons , Catálise
11.
Beilstein J Org Chem ; 19: 204-211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865024

RESUMO

The total synthesis of racemic incarvilleatone has been achieved by utilizing unexplored accelerated Rauhut-Currier (RC) dimerization. The other key steps of the synthesis are oxa-Michael and aldol reactions in a tandem sequence. Racemic incarvilleatone was separated by chiral HPLC and the configuration of each enantiomer was determined by single-crystal X-ray analysis. In addition, a one-pot synthesis of (±)-incarviditone has been achieved from rac-rengyolone by using KHMDS as a base. We have also assessed the anticancer activity of all the synthesized compounds in breast cancer cells nonetheless, they exhibited very limited growth suppression activity.

12.
Chemistry ; 28(56): e202201896, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-35862652

RESUMO

In this work, two monomeric magnesium alkyl complexes (1 and 2) were prepared using bis(phosphino)carbazole framework and among them 1 has been used as a catalyst for hydroboration of alkenes and alkynes with pinacolborane (HBpin). A broad variety of aromatic and aliphatic alkenes and alkynes were efficiently reduced. Anti-Markovnikov regioselective hydroboration of alkenes and alkynes was achieved, which was confirmed by deuterium-labelling experiments. The work represents the first example of the use of magnesium in homogeneous catalytic hydroboration of alkene with broad substrate scope. Experimental mechanistic investigations and DFT calculations provided insights into the reaction mechanism. Finally, the hydroboration protocol was extended to terpenes.

13.
Ann Behav Med ; 56(3): 235-244, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34180500

RESUMO

BACKGROUND: Although yoga is found to be beneficial in the management of type 2 diabetes (T2D), its mechanism of action is poorly understood. T2D is also known to be associated with increased oxidative stress (OS) and DNA damage. PURPOSE: This study examines how yoga modulates OS-induced DNA damage and the efficiency of DNA repair in T2D conditions. METHODS: In this assessor-masked randomized clinical trial, T2D subjects (n = 61), aged (Mean ± SD, 50.3 ± 4.2) were randomly allocated into Yoga group (31) that received 10 weeks of yoga intervention and Control (30) with routine exercises. Molecular and biochemical assessments were done before and after the intervention period. Structural Equation Modeling using "R" was used for mediation analysis. RESULTS: At the end of the 10th week, Yoga group showed significant reduction in DNA damage indicators like Tail Moment (-5.88[95%CI: -10.47 to -1.30]; P = .013) and Olive Tail Moment (-2.93[95%CI: -4.87 to -1.00]; P < .01), oxidative DNA damage marker 8-OHdG (-60.39[95%CI: -92.55 to -28.23]; P < .001) and Fasting Blood Sugar (-22.58[95%CI: -44.33 to -0.83]; P = .042) compared to Control. OGG1 protein expression indicating DNA repair, improved significantly (17.55[95%CI:1.37 to 33.73]; P = .034) whereas Total Antioxidant Capacity did not (5.80[95%CI: -0.86 to 12.47]; P = 0.086). Mediation analysis indicated that improvements in oxidative DNA damage and DNA repair together played a major mediatory role (97.4%) in carrying the effect of yoga. CONCLUSION: The beneficial effect of yoga on DNA damage in T2D subjects was found to be mediated by mitigation of oxidative DNA damage and enhancement of DNA repair. CLINICAL TRIAL INFORMATION: (www.ctri.nic.in) CTRI/2018/07/014825.


Assuntos
Diabetes Mellitus Tipo 2 , Meditação , Yoga , Pré-Escolar , Dano ao DNA , Diabetes Mellitus Tipo 2/terapia , Terapia por Exercício , Humanos , Lactente
14.
J Org Chem ; 86(14): 9344-9352, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34228439

RESUMO

The diastereoselective formal synthesis of (-)-quinagolide, a D2 receptor agonist, has been achieved. The synthesis started from l-pyroglutamic acid and relied on utilization of (a) a stereospecific catalytic hydrogenation and diastereoselective Horner-Emmons-Michael cascade to obtain functionalized prolinate, (b) a Lewis acid mediated Pummerer cyclization to construct a tricyclic fused ring system, and (c) a diastereoselective ring expansion via a bicyclic aziridinium intermediate to access the required 3-substituted piperidine scaffold.


Assuntos
Quinolinas , Aminoquinolinas , Ciclização , Estrutura Molecular , Estereoisomerismo
15.
Angew Chem Int Ed Engl ; 60(48): 25522-25529, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34505340

RESUMO

Upon stabilization by 5,6-bis(diisopropylphosphino)acenaphthene to form compound 1, the fugitive antimony (I) cation exhibited nucleophilic behavior towards coinage metals. Compound 1 was strategically synthesized at room temperature from SbCl3 , the bis(phosphine), and trimethylsilyl trifluoromethanesulfonate taken in a 1:2:3 ratio, whereby the bis(phosphine) plays the dual role of a reductant and a supporting ligand. The generation of 1 involves two-electron oxidation of the ligand to form a P-P bonded diphosphonium dication. Compound 1 was separated from this dication to give both products in pure form in moderate yields. Despite the overall positive charge, the SbI site in 1 was found to bind to metal centers, forming complexes with AuI , AgI and CuI . Compound 1 reduced CuII to CuI and formed a coordination complex with the resulting CuI species. The effects of the electron-rich bis(phosphine) and the constrained peri geometry in stabilizing and enhancing the nucleophilicity of 1 have been rationalized through computational studies.

16.
Angew Chem Int Ed Engl ; 60(38): 20706-20710, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34288335

RESUMO

Disilenes with differently coordinated silicon atoms are not known. Here, we have shown the high yield synthesis of a range of disilenes (2-4 and 6) upon reaction of a hypersilyl silylene PhC(NtBu)2 SiSi(SiMe3 )3 (1) with aliphatic chlorophosphines. The most striking characteristic of these disilenes is the presence of two differently coordinated Si atoms (one is three-coordinated, the other four-coordinated). The analogous reaction with Ph2 PCl did not afford the desired disilene, but, surprisingly, led to the first tetraphosphinosilane (8). DFT calculations were performed to understand the bonding in disilenes and differences in reactivity of the complexes.

17.
Angew Chem Int Ed Engl ; 60(22): 12264-12268, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33749991

RESUMO

Although the construction of axially chiral C-C bonds leading to the atroposelective synthesis of biaryls and allied compounds are well-known, the related synthesis of compounds bearing axially chiral C-N bonds are relatively rare. Described herein is the N-heterocyclic carbene-catalyzed atroposelective synthesis of N-aryl succinimides having an axially chiral C-N bond via the desymmetrization of N-aryl maleimides. The NHC involved intermolecular Stetter-aldol cascade of dialdehydes with prochiral N-aryl maleimides followed by oxidation afforded N-aryl succinimides in good yields and ee values. Preliminary studies on rotation barrier for the C-N bond, the temperature dependence, and detailed DFT studies on mechanism are also provided.

18.
J Org Chem ; 85(23): 15038-15050, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33119302

RESUMO

A silver-catalyzed cycloisomerization/1,6-conjugate addition of homopropargyl sulfonamides to p-quinone methides to access diverse diarylmethine substituted dihydropyrroles has been disclosed. The reaction pathway involves an intramolecular cascade cyclization of homopropargyl sulfonamides to generate a highly reactive dihydropyrrole intermediate in situ followed by conjugate addition with p-quinone methides. This method provides an efficient and scalable route for the synthesis of 3-diarylmethine substituted dihydropyrroles, in one pot.

19.
Mikrochim Acta ; 187(4): 196, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32125544

RESUMO

Nanostructured nickel (Ni) and nickel oxide (NiO) electrodes were fabricated on Ni foils using the glancing angle deposition (GLAD) technique. Cyclic voltammetry and amperometry showed the electrodes enable non-enzymatic electrochemical determination of glucose in strongly alkaline media. Under optimized conditions of NaOH concentration and working potential (~ 0.50 V vs. Ag/AgCl), the GLAD electrodes performed far better than bare Ni foil electrodes, with the GLAD NiO electrode showing an outstanding sensitivity (4400 µA mM-1 cm-2), superior detection limit (7 nM), and wide dynamic range (0.5 µM-9 mM), with desirable selectivity and reproducibility. Based on their performance at a low concentration, the GLAD NiO electrodes were also used to quantify glucose in artificial urine and sweat samples which have significantly lower glucose levels than blood. The GLAD NiO electrodes showed negligible response to the common interferents in glucose measurement (uric acid, dopamine, serotonin, and ascorbic acid), and they were not poisoned by high amounts of sodium chloride. Graphical abstract The figures depict (A) SEM image of vertical post-GLAD NiO electrodes used for non-enzymatic electrochemical glucose monitoring, and (B) calibration plots of the three different electrodes.


Assuntos
Técnicas Biossensoriais , Glicemia/análise , Técnicas Eletroquímicas , Nanoestruturas/química , Níquel/química , Eletrodos , Humanos , Tamanho da Partícula , Propriedades de Superfície
20.
Angew Chem Int Ed Engl ; 59(7): 2897-2903, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31804011

RESUMO

The synthesis of crystalline helical polymers of trehalose via topochemical azide-alkyne cycloaddition (TAAC) of a trehalose-based monomer is presented. An unsymmetrical trehalose derivative having azide and alkyne crystallizes in two different forms having almost similar packing. Upon heating, both the crystals undergo TAAC reaction to form crystalline polymers. Powder X-ray diffraction (PXRD) studies revealed that the monomers in both the crystals polymerize in a crystal-to-crystal fashion; circular dichroism (CD) studies of the product crystals revealed that the formed polymer is helically ordered. This solvent-free, catalyst-free polymerization method that eliminates the tedious purification of the polymeric product exemplifies the advantage of topochemical polymerization reaction over traditional solution-phase polymerization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA