Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077324

RESUMO

For many cancer types, being undetectable from early symptoms or blood tests, or often detected at late stages, medical imaging emerges as the most efficient tool for cancer screening. MRI, ultrasound, X-rays (mammography), and X-ray CT (CT) are currently used in hospitals with variable costs. Diagnostic materials that can detect breast tumors through molecular recognition and amplify the signal at the targeting site in combination with state-of-the-art CT techniques, such as dual-energy CT, could lead to a more precise detection and assist significantly in image-guided intervention. Herein, we have developed a ligand-specific X-ray contrast agent that recognizes α5ß1 integrins overexpressed in MDA-MB-231 breast cancer cells for detection of triple (-) cancer, which proliferates very aggressively. In vitro studies show binding and internalization of our nanoprobes within those cells, towards uncoated nanoparticles (NPs) and saline. In vivo studies show high retention of ~3 nm ligand-PEG-S-AuNPs in breast tumors in mice (up to 21 days) and pronounced CT detection, with statistical significance from saline and iohexol, though only 0.5 mg of metal were utilized. In addition, accumulation of ligand-specific NPs is shown in tumors with minimal presence in other organs, relative to controls. The prolonged, low-metal, NP-enhanced spectral-CT detection of triple (-) breast cancer could lead to breakthrough advances in X-ray cancer diagnostics, nanotechnology, and medicine.


Assuntos
Nanopartículas Metálicas , Neoplasias , Animais , Meios de Contraste/química , Ouro/química , Ligantes , Mamografia/métodos , Nanopartículas Metálicas/química , Camundongos , Tomografia Computadorizada por Raios X/métodos
2.
Langmuir ; 37(5): 1682-1696, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33492958

RESUMO

The beguiling world of functional polymers is dominated by thermoresponsive polymers with unique structural and molecular attributes. Limited work has been reported on the protein-induced conformational transition of block copolymers; furthermore, the literature lacks a clear understanding of the influence of proteins on the phase behavior of thermoresponsive copolymers. Herein, we have synthesized poly(N-isopropylacrylamide)-b-poly(N-vinylcaprolactam) (PNIPAM-b-PNVCL) by RAFT polymerization using N-isopropylacrylamide and N-vinylcaprolactam. Furthermore, using various biophysical techniques, we have explored the effect of cytochrome c (Cyt c), myoglobin (Mb), and hemoglobin (Hb) with varying concentrations on the aggregation behavior of PNIPAM-b-PNVCL. Absorption and steady-state fluorescence spectroscopy measurements were performed at room temperature to examine the copolymerization effect on fluorescent probe binding and biomolecular interactions between PNIPAM-b-PNVCL and proteins. Furthermore, temperature-dependent fluorescence spectroscopy and dynamic light scattering studies were performed to get deeper insights into the lower critical solution temperature (LCST) of PNIPAM-b-PNVCL. Small-angle neutron scattering (SANS) was also employed to understand the copolymer behavior in the presence of heme proteins. With the incorporation of proteins to PNIPAM-b-PNVCL aqueous solution, LCST has been varied to different extents owing to the preferential, molecular, and noncovalent interactions between PNIPAM-b-PNVCL and proteins. The present study can pave new insights between heme proteins and block copolymer interactions, which will help design biomimetic surfaces and aid in the strategic fabrication of copolymer-protein bioconjugates.


Assuntos
Hemeproteínas , Resinas Acrílicas , Transição de Fase , Polímeros , Temperatura
3.
Pharmaceutics ; 15(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37111644

RESUMO

In this study, diselenide (Se-Se) and disulfide (S-S) redox-responsive core-cross-linked (CCL) micelles were synthesized using poly(ethylene oxide)2k-b-poly(furfuryl methacrylate)1.5k (PEO2k-b-PFMA1.5k), and their redox sensitivity was compared. A single electron transfer-living radical polymerization technique was used to prepare PEO2k-b-PFMA1.5k from FMA monomers and PEO2k-Br initiators. An anti-cancer drug, doxorubicin (DOX), was incorporated into PFMA hydrophobic parts of the polymeric micelles, which were then cross-linked with maleimide cross-linkers, 1,6-bis(maleimide) hexane, dithiobis(maleimido) ethane and diselenobis(maleimido) ethane via Diels-Alder reaction. Under physiological conditions, the structural stability of both S-S and Se-Se CCL micelles was maintained; however, treatments with 10 mM GSH induced redox-responsive de-cross-linking of S-S and Se-Se bonds. In contrast, the S-S bond was intact in the presence of 100 mM H2O2, while the Se-Se bond underwent de-crosslinking upon the treatment. DLS studies revealed that the size and PDI of (PEO2k-b-PFMA1.5k-Se)2 micelles varied more significantly in response to changes in the redox environment than (PEO2k-b-PFMA1.5k-S)2 micelles. In vitro release studies showed that the developed micelles had a lower drug release rate at pH 7.4, whereas a higher release was observed at pH 5.0 (tumor environment). The micelles were non-toxic against HEK-293 normal cells, which revealed that they could be safe for use. Nevertheless, DOX-loaded S-S/Se-Se CCL micelles exhibited potent cytotoxicity against BT-20 cancer cells. Based on these results, the (PEO2k-b-PFMA1.5k-Se)2 micelles can be more sensitive drug carriers than (PEO2k-b-PFMA1.5k-S)2 micelles.

4.
Materials (Basel) ; 14(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34947507

RESUMO

In the present study, we developed near-infrared (NIR)-responsive shell-crosslinked (SCL) micelles using the Diels-Alder (DA) click reaction between an amphiphilic copolymer poly(d,l-lactide)20-b-poly((furfuryl methacrylate)10-co-(N-acryloylmorpholine)78) (PLA20-b-P(FMA10-co-NAM78)) and a diselenide-containing crosslinker, bis(maleimidoethyl) 3,3'-diselanediyldipropionoate (BMEDSeDP). The PLA20-b-P(FMA10-co-NAM78) copolymer was synthesized by RAFT polymerization of FMA and NAM using a PLA20-macro-chain transfer agent (PLA20-CTA). The DA reaction between BMEDSeDP and the furfuryl moieties in the copolymeric micelles in water resulted in the formation of SCL micelles. The SCL micelles were analyzed by 1H-NMR, FE-SEM, and DLS. An anticancer drug, doxorubicin (DOX), and an NIR sensitizer, indocyanine green (ICG), were effectively incorporated into the SCL micelles during the crosslinking reaction. The DOX/ICG-loaded SCL micelles showed pH- and NIR-responsive drug release, where burst release was observed under NIR laser irradiation. The in vitro cytotoxicity analysis demonstrated that the SCL was not cytotoxic against normal HFF-1 cells, while DOX/ICG-loaded SCL micelles exhibited significant antitumor activity toward HeLa cells. Thus, the SCL micelles of PLA20-b-P(FMA10-co-NAM78) can be used as a potential delivery vehicle for the controlled drug release in cancer therapy.

5.
Carbohydr Polym ; 260: 117779, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33712135

RESUMO

Task-specific drug release is essential in the development of hydrogels as drug delivery systems. The aim of the study is to report the effect of porosity on alginate hydrogels, which may be controlled by the design of crosslinkers, on drug release behavior. Two alginate-based hydrogels were prepared: alginate-norbornene (Alg-Nb) crosslinked by disulfide-tetrazine (S-Tz; hydrogel A) and alginate-furfuryl amine (Alg-FA) crosslinked by disulfide-maleimide (S-Ma; hydrogel B). Results showed the porosity of hydrogel A was controllable by adjusting the amount of S-Tz. Gel formation was facilitated by a "click" reaction between Alg-Nb and S-Tz, producing nitrogen gas, which, in turn, acted as an in-situ pore generator. Hydrogel B showed a non-porous morphology, as gelation was processed via addition reaction between Alg-FA and S-Ma, which produced no by-product. The study showed that crosslinker proportion and porosity were significant factors influencing drug release behavior of the alginate hydrogels. The presence of a porous structure increased the drug release while non-porous hydrogels led to a very slow release. In addition, the porous alginate hydrogels could sustainably release doxorubicin for 35 days.


Assuntos
Alginatos/química , Doxorrubicina/química , Portadores de Fármacos/química , Hidrogéis/química , Dissulfetos/química , Doxorrubicina/metabolismo , Liberação Controlada de Fármacos , Maleimidas/química , Porosidade
6.
Materials (Basel) ; 13(17)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842626

RESUMO

Owing to their unique topology and physical properties, micelles based on miktoarm amphiphilic star block copolymers play an important role in the biomedical field for drug delivery. Herein, we developed a series of AB2-type poly(D,L-lactide-co-glycolide)-b-poly(N-acryloyl morpholine) (PLGA-b-PNAM2) miktoarm star block copolymers by reversible addition-fragmentation chain-transfer polymerization and ring-opening copolymerization. The resulting miktoarm star polymers were investigated by 1H NMR spectroscopy and gel permeation chromatography. The critical micellar concentration value of the micelles increases with an increase in PNAM block length. As revealed by transmission electron microscopy and dynamic light scattering, the amphiphilic miktoarm star block copolymers can self-assemble to form spherical micellar aggregates in water. The anticancer drug doxorubicin (DOX) was encapsulated by polymeric micelles; the drug-loading efficiency and drug-loading content of the DOX-loaded micelles were 81.7% and 9.1%, respectively. Acidic environments triggered the dissociation of the polymeric micelles, which led to the more release of DOX in pH 6.4 than pH 7.4. The amphiphilic PLGA-b-PNAM2 miktoarm star block copolymers may have broad application as nanocarriers for controlled drug delivery.

7.
ACS Appl Mater Interfaces ; 7(36): 20021-33, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26323031

RESUMO

We have synthesized a well-defined four-arm star amphiphilic block copolymer [poly(DLLA)-b-poly(NVP)]4 [star-(PDLLA-b-PNVP)4] that consists of D,L-lactide (DLLA) and N-vinylpyrrolidone (NVP) via the combination of ring-opening polymerization (ROP) and xanthate-mediated reversible addition-fragmentation chain transfer (RAFT) polymerization. Synthesis of the polymer was verified by 1H NMR spectroscopy and gel permeation chromatography (GPC). The amphiphilic four-arm star block copolymer forms spherical micelles in water as demonstrated by transmission electron microscopy (TEM) and 1H NMR spectroscopy. Pyrene acts as a probe to ascertain the critical micellar concentration (cmc) by using fluorescence spectroscopy. Methotrexate (MTX)-loaded polymeric micelles of star-(PDLLA15-b-PNVP10)4 amphiphilic block copolymer were prepared and characterized by fluorescence and TEM studies. Star-(PDLLA15-b-PNVP10)4 copolymer was found to be significantly effective with respect to inhibition of proliferation and lysis of human and murine lymphoma cells. The amphiphilic block copolymer causes cell death in parental and MTX-resistant Dalton lymphoma (DL) and Raji cells. The formulation does not cause hemolysis in red blood cells and is tolerant to lymphocytes compared to free MTX. Therapy with MTX-loaded star-(PDLLA15-b-PNVP10)4 amphiphilic block copolymer micelles prolongs the life span of animals with neoplasia by reducing the tumor load, preventing metastasis and augmenting CD8+ T cell-mediated adaptive immune responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Portadores de Fármacos/química , Metotrexato/química , Polímeros/química , Imunidade Adaptativa , Animais , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eritrócitos/citologia , Hemólise/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Linfoma/tratamento farmacológico , Linfoma/imunologia , Linfoma/patologia , Metotrexato/administração & dosagem , Metotrexato/toxicidade , Camundongos , Camundongos Endogâmicos AKR , Micelas , Metástase Neoplásica , Polímeros/síntese química , Pirenos/química , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA