Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Glycobiology ; 33(5): 354-357, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-36799723

RESUMO

Recent technological advances in glycobiology have resulted in a large influx of data and the publication of many papers describing discoveries in glycoscience. However, the terms used in describing glycan structural features are not standardized, making it difficult to harmonize data across biomolecular databases, hampering the harvesting of information across studies and hindering text mining and curation efforts. To address this shortcoming, the Glycan Structure Dictionary has been developed as a reference dictionary to provide a standardized list of widely used glycan terms that can help in the curation and mapping of glycan structures described in publications. Currently, the dictionary has 190 glycan structure terms with 297 synonyms linked to 3,332 publications. For a term to be included in the dictionary, it must be present in at least 2 peer-reviewed publications. Synonyms, annotations, and cross-references to GlyTouCan, GlycoMotif, and other relevant databases and resources are also provided when available. The purpose of this effort is to facilitate biocuration, assist in the development of text mining tools, improve the harmonization of search, and browse capabilities in glycoinformatics resources and help to map glycan structures to function and disease. It is also expected that authors will use these terms to describe glycan structures in their manuscripts over time. A mechanism is also provided for researchers to submit terms for potential incorporation. The dictionary is available at https://wiki.glygen.org/Glycan_structure_dictionary.


Assuntos
Mineração de Dados , Polissacarídeos , Mineração de Dados/métodos , Bases de Dados Factuais , Polissacarídeos/química , Glicômica/métodos
2.
Glycobiology ; 32(7): 552-555, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35352122

RESUMO

Glycan microarrays are essential tools in glycobiology and are being widely used for assignment of glycan ligands in diverse glycan recognition systems. We have developed a new software, called Carbohydrate microArray Analysis and Reporting Tool (CarbArrayART), to address the need for a distributable application for glycan microarray data management. The main features of CarbArrayART include: (i) Storage of quantified array data from different array layouts with scan data and array-specific metadata, such as lists of arrayed glycans, array geometry, information on glycan-binding samples, and experimental protocols. (ii) Presentation of microarray data as charts, tables, and heatmaps derived from the average fluorescence intensity values that are calculated based on the imaging scan data and array geometry, as well as filtering and sorting functions according to monosaccharide content and glycan sequences. (iii) Data export for reporting in Word, PDF, and Excel formats, together with metadata that are compliant with the guidelines of MIRAGE (Minimum Information Required for A Glycomics Experiment). CarbArrayART is designed for routine use in recording, storage, and management of any slide-based glycan microarray experiment. In conjunction with the MIRAGE guidelines, CarbArrayART addresses issues that are critical for glycobiology, namely, clarity of data for evaluation of reproducibility and validity.


Assuntos
Glicômica , Polissacarídeos , Glicômica/métodos , Armazenamento e Recuperação da Informação , Análise em Microsséries/métodos , Polissacarídeos/química , Reprodutibilidade dos Testes , Software
3.
Glycobiology ; 31(7): 741-750, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-33677548

RESUMO

Recent years have seen great advances in the development of glycoproteomics protocols and methods resulting in a sustainable increase in the reporting proteins, their attached glycans and glycosylation sites. However, only very few of these reports find their way into databases or data repositories. One of the major reasons is the absence of digital standard to represent glycoproteins and the challenging annotations with glycans. Depending on the experimental method, such a standard must be able to represent glycans as complete structures or as compositions, store not just single glycans but also represent glycoforms on a specific glycosylation side, deal with partially missing site information if no site mapping was performed, and store abundances or ratios of glycans within a glycoform of a specific site. To support the above, we have developed the GlycoConjugate Ontology (GlycoCoO) as a standard semantic framework to describe and represent glycoproteomics data. GlycoCoO can be used to represent glycoproteomics data in triplestores and can serve as a basis for data exchange formats. The ontology, database providers and supporting documentation are available online (https://github.com/glycoinfo/GlycoCoO).


Assuntos
Glicoproteínas , Polissacarídeos , Glicoproteínas/metabolismo , Glicosilação , Polissacarídeos/metabolismo
4.
Bioinformatics ; 36(12): 3941-3943, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32324859

RESUMO

SUMMARY: Glycoinformatics plays a major role in glycobiology research, and the development of a comprehensive glycoinformatics knowledgebase is critical. This application note describes the GlyGen data model, processing workflow and the data access interfaces featuring programmatic use case example queries based on specific biological questions. The GlyGen project is a data integration, harmonization and dissemination project for carbohydrate and glycoconjugate-related data retrieved from multiple international data sources including UniProtKB, GlyTouCan, UniCarbKB and other key resources. AVAILABILITY AND IMPLEMENTATION: GlyGen web portal is freely available to access at https://glygen.org. The data portal, web services, SPARQL endpoint and GitHub repository are also freely available at https://data.glygen.org, https://api.glygen.org, https://sparql.glygen.org and https://github.com/glygener, respectively. All code is released under license GNU General Public License version 3 (GNU GPLv3) and is available on GitHub https://github.com/glygener. The datasets are made available under Creative Commons Attribution 4.0 International (CC BY 4.0) license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Conhecimento , Software , Glicômica , Armazenamento e Recuperação da Informação , Fluxo de Trabalho
5.
Glycobiology ; 29(6): 452-460, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913289

RESUMO

Mass spectrometry (MS) is one of the most effective techniques for high-throughput, high-resolution characterization of glycan structures. Although many software applications have been developed over the last decades for the interpretation of MS data of glycan structures, only a few are capable of dealing with the large data sets produced by glycomics analysis. Furthermore, these applications utilize databases that can lead to redundant glycan annotations and do not support post-processing of the data within the software or by third party applications. To address the needs, we present GRITS Toolbox, a freely-available, platform-independent software application capable of storing and processing glycomics MS data along with associated metadata. GRITS Toolbox automatically annotates MS data using an integrated glycan identification module that references manually curated databases of mammalian glycans (provided with the software) or any user-defined databases. Extensive display routines are provided to post-process the data and refine the automated annotation using expert knowledge of the user. The software also allows side by side comparison of annotations from different MS runs or samples and exporting of annotations into Excel format.


Assuntos
Glicômica/métodos , Espectrometria de Massas , Software , Bases de Dados Factuais
6.
Glycobiology ; 29(5): 349-354, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30778580

RESUMO

The Minimum Information Required for a Glycomics Experiment (MIRAGE) is an initiative created by experts in the fields of glycobiology, glycoanalytics and glycoinformatics to design guidelines that improve the reporting and reproducibility of glycoanalytical methods. Previously, the MIRAGE Commission has published guidelines for describing sample preparation methods and the reporting of glycan array and mass spectrometry techniques and data collections. Here, we present the first version of guidelines that aim to improve the quality of the reporting of liquid chromatography (LC) glycan data in the scientific literature. These guidelines cover all aspects of instrument setup and modality of data handling and manipulation and is cross-linked with other MIRAGE recommendations. The most recent version of the MIRAGE-LC guidelines is freely available at the MIRAGE project website doi:10.3762/mirage.4.


Assuntos
Glicômica , Polissacarídeos/análise , Cromatografia Líquida , Humanos
7.
Nucleic Acids Res ; 44(D1): D1237-42, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26476458

RESUMO

Glycans are known as the third major class of biopolymers, next to DNA and proteins. They cover the surfaces of many cells, serving as the 'face' of cells, whereby other biomolecules and viruses interact. The structure of glycans, however, differs greatly from DNA and proteins in that they are branched, as opposed to linear sequences of amino acids or nucleotides. Therefore, the storage of glycan information in databases, let alone their curation, has been a difficult problem. This has caused many duplicated efforts when integration is attempted between different databases, making an international repository for glycan structures, where unique accession numbers are assigned to every identified glycan structure, necessary. As such, an international team of developers and glycobiologists have collaborated to develop this repository, called GlyTouCan and is available at http://glytoucan.org/, to provide a centralized resource for depositing glycan structures, compositions and topologies, and to retrieve accession numbers for each of these registered entries. This will thus enable researchers to reference glycan structures simply by accession number, as opposed to by chemical structure, which has been a burden to integrate glycomics databases in the past.


Assuntos
Bases de Dados de Compostos Químicos , Polissacarídeos/química , Estrutura Molecular
9.
Glycobiology ; 27(10): 915-919, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922742

RESUMO

Rapid and continued growth in the generation of glycomic data has revealed the need for enhanced development of basic infrastructure for presenting and interpreting these datasets in a manner that engages the broader biomedical research community. Early in their growth, the genomic and proteomic fields implemented mechanisms for assigning unique gene and protein identifiers that were essential for organizing data presentation and for enhancing bioinformatic approaches to extracting knowledge. Similar unique identifiers are currently absent from glycomic data. In order to facilitate continued growth and expanded accessibility of glycomic data, the authors strongly encourage the glycomics community to coordinate the submission of their glycan structures to the GlyTouCan Repository and to make use of GlyTouCan identifiers in their communications and publications. The authors also deeply encourage journals to recommend a submission workflow in which submitted publications utilize GlyTouCan identifiers as a standard reference for explicitly describing glycan structures cited in manuscripts.


Assuntos
Bases de Dados de Compostos Químicos , Glicômica/métodos , Polissacarídeos/química , Glicômica/normas , Polissacarídeos/classificação
10.
Glycobiology ; 27(4): 280-284, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27993942

RESUMO

MIRAGE (Minimum Information Required for A Glycomics Experiment) is an initiative that was created by experts in the fields of glycobiology, glycoanalytics and glycoinformatics to produce guidelines for reporting results from the diverse types of experiments and analyses used in structural and functional studies of glycans in the scientific literature. As a sequel to the guidelines for sample preparation (Struwe et al. 2016, Glycobiology, 26:907-910) and mass spectrometry  data (Kolarich et al. 2013, Mol. Cell Proteomics, 12:991-995), here we present the first version of guidelines intended to improve the standards for reporting data from glycan microarray analyses. For each of eight areas in the workflow of a glycan microarray experiment, we provide guidelines for the minimal information that should be provided in reporting results. We hope that the MIRAGE glycan microarray guidelines proposed here will gain broad acceptance by the community, and will facilitate interpretation and reproducibility of the glycan microarray results with implications in comparison of data from different laboratories and eventual deposition of glycan microarray data in international databases.

11.
Glycobiology ; 26(9): 907-910, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27654115

RESUMO

The minimum information required for a glycomics experiment (MIRAGE) project was established in 2011 to provide guidelines to aid in data reporting from all types of experiments in glycomics research including mass spectrometry (MS), liquid chromatography, glycan arrays, data handling and sample preparation. MIRAGE is a concerted effort of the wider glycomics community that considers the adaptation of reporting guidelines as an important step towards critical evaluation and dissemination of datasets as well as broadening of experimental techniques worldwide. The MIRAGE Commission published reporting guidelines for MS data and here we outline guidelines for sample preparation. The sample preparation guidelines include all aspects of sample generation, purification and modification from biological and/or synthetic carbohydrate material. The application of MIRAGE sample preparation guidelines will lead to improved recording of experimental protocols and reporting of understandable and reproducible glycomics datasets.


Assuntos
Glicômica/métodos , Polissacarídeos/isolamento & purificação , Manejo de Espécimes/métodos , Cromatografia Líquida , Conjuntos de Dados como Assunto , Guias como Assunto , Espectrometria de Massas , Polissacarídeos/química
12.
Bioinformatics ; 31(2): 242-5, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25217575

RESUMO

MOTIVATION: In the field of glycomics research, several different techniques are used for structure elucidation. Although multiple techniques are often used to increase confidence in structure assignments, most glycomics databases allow storing of only a single type of experimental data. In addition, the methods used to prepare a sample for analysis is seldom recorded making it harder to reproduce the analytical data and results. RESULTS: We have extended the freely available EUROCarbDB framework to allow the submission of experimental data and the reporting of several orthogonal experimental datasets. The features aim to increase the understandability and reproducibility of the reported data. AVAILABILITY AND IMPLEMENTATION: The installation with the glycan standards is available at http://glycomics.ccrc.uga.edu/eurocarb/. The source code of the project is available at https://code.google.com/p/ucdb/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Carboidratos/química , Biologia Computacional/métodos , Bases de Dados como Assunto , Glicômica/métodos , Software , Humanos
13.
Bioinformatics ; 31(6): 919-25, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25388145

RESUMO

MOTIVATION: Over the last decades several glycomics-based bioinformatics resources and databases have been created and released to the public. Unfortunately, there is no common standard in the representation of the stored information or a common machine-readable interface allowing bioinformatics groups to easily extract and cross-reference the stored information. RESULTS: An international group of bioinformatics experts in the field of glycomics have worked together to create a standard Resource Description Framework (RDF) representation for glycomics data, focused on glycan sequences and related biological source, publications and experimental data. This RDF standard is defined by the GlycoRDF ontology and will be used by database providers to generate common machine-readable exports of the data stored in their databases. AVAILABILITY AND IMPLEMENTATION: The ontology, supporting documentation and source code used by database providers to generate standardized RDF are available online (http://www.glycoinfo.org/GlycoRDF/).


Assuntos
Biologia Computacional/métodos , Sistemas de Gerenciamento de Base de Dados/normas , Bases de Dados Factuais/normas , Glicômica/métodos , Armazenamento e Recuperação da Informação/métodos , Polissacarídeos/química , Software , Documentação , Ontologia Genética , Humanos
14.
Glycobiology ; 25(1): 66-73, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25165068

RESUMO

Most currently available glycan structure databases use their own proprietary structure representation schema and contain numerous annotation errors. These cause problems when glycan databases are used for the annotation or mining of data generated in the laboratory. Due to the complexity of glycan structures, curating these databases is often a tedious and labor-intensive process. However, rigorously validating glycan structures can be made easier with a curation workflow that incorporates a structure-matching algorithm that compares candidate glycans to a canonical tree that embodies structural features consistent with established mechanisms for the biosynthesis of a particular class of glycans. To this end, we have implemented Qrator, a web-based application that uses a combination of external literature and database references, user annotations and canonical trees to assist and guide researchers in making informed decisions while curating glycans. Using this application, we have started the curation of large numbers of N-glycans, O-glycans and glycosphingolipids. Our curation workflow allows creating and extending canonical trees for these classes of glycans, which have subsequently been used to improve the curation workflow.


Assuntos
Bases de Dados de Compostos Químicos , Glicoesfingolipídeos/química , Polissacarídeos/química , Software , Algoritmos , Sequência de Carboidratos , Mineração de Dados , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/classificação , Humanos , Internet , Anotação de Sequência Molecular , Dados de Sequência Molecular , Polissacarídeos/biossíntese , Polissacarídeos/classificação
16.
Mol Cell Proteomics ; 12(4): 991-5, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23378518

RESUMO

The MIRAGE guidelines are being developed in response to a critical need in the glycobiology community to clarify glycoanalytic results so that they are more readily evaluated (in terms of their scope and depth) and to facilitate the reproduction of important results in the laboratory. The molecular and biological complexity of the glycosylation process makes thorough reporting of the results of a glycomics experiment a highly challenging endeavor. The resulting data specify the identity and quantity of complex structures, the precise molecular features of which are sometimes inferred using prior knowledge, such as familiarity with a particular biosynthetic mechanism. Specifying the exact methods and assumptions that were used to assign and quantify reported structures allows the interested scientist to appreciate the scope and depth of the analysis. Mass spectrometry (MS) is the most widely used tool for glycomics experiments. The interpretation and reproducibility of MS-based glycomics data depend on comprehensive meta-data describing the instrumentation, instrument setup, and data acquisition protocols. The MIRAGE guidelines for MS-based glycomics have been designed to facilitate the collection and sharing of this critical information in order to assist the glycoanalyst in generating data sets with maximum information content and biological relevance.


Assuntos
Glicômica/normas , Espectrometria de Massas/normas , Animais , Glicoproteínas/química , Guias como Assunto , Humanos , Melhoria de Qualidade , Padrões de Referência
17.
BMC Bioinformatics ; 15 Suppl 1: S9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24564482

RESUMO

BACKGROUND: Recent progress in method development for characterising the branched structures of complex carbohydrates has now enabled higher throughput technology. Automation of structure analysis then calls for software development since adding meaning to large data collections in reasonable time requires corresponding bioinformatics methods and tools. Current glycobioinformatics resources do cover information on the structure and function of glycans, their interaction with proteins or their enzymatic synthesis. However, this information is partial, scattered and often difficult to find to for non-glycobiologists. METHODS: Following our diagnosis of the causes of the slow development of glycobioinformatics, we review the "objective" difficulties encountered in defining adequate formats for representing complex entities and developing efficient analysis software. RESULTS: Various solutions already implemented and strategies defined to bridge glycobiology with different fields and integrate the heterogeneous glyco-related information are presented. CONCLUSIONS: Despite the initial stage of our integrative efforts, this paper highlights the rapid expansion of glycomics, the validity of existing resources and the bright future of glycobioinformatics.


Assuntos
Glicômica/métodos , Polissacarídeos/análise , Sequência de Carboidratos , Glicômica/normas , Internet , Polissacarídeos/química , Proteínas/química , Proteínas/metabolismo , Software
18.
Glycobiology ; 24(5): 402-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24653214

RESUMO

The MIRAGE (minimum information required for a glycomics experiment) initiative was founded in Seattle, WA, in November 2011 in order to develop guidelines for reporting the qualitative and quantitative results obtained by diverse types of glycomics analyses, including the conditions and techniques that were applied to prepare the glycans for analysis and generate the primary data along with the tools and parameters that were used to process and annotate this data. These guidelines must address a broad range of issues, as glycomics data are inherently complex and are generated using diverse methods, including mass spectrometry (MS), chromatography, glycan array-binding assays, nuclear magnetic resonance (NMR) and other rapidly developing technologies. The acceptance of these guidelines by scientists conducting research on biological systems in which glycans have a significant role will facilitate the evaluation and reproduction of glycomics experiments and data that is reported in scientific journals and uploaded to glycomics databases. As a first step, MIRAGE guidelines for glycan analysis by MS have been recently published (Kolarich D, Rapp E, Struwe WB, Haslam SM, Zaia J., et al. 2013. The minimum information required for a glycomics experiment (MIRAGE) project - Improving the standards for reporting mass spectrometry-based glycoanalytic data. Mol. Cell Proteomics. 12:991-995), allowing them to be implemented and evaluated in the context of real-world glycobiology research. In this paper, we set out the historical context, organization structure and overarching objectives of the MIRAGE initiative.


Assuntos
Bases de Dados Factuais/normas , Glicômica/métodos , Glicômica/normas , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Espectrometria de Massas/normas
19.
Nucleic Acids Res ; 39(Database issue): D373-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21045056

RESUMO

GlycomeDB integrates the structural and taxonomic data of all major public carbohydrate databases, as well as carbohydrates contained in the Protein Data Bank, which renders the database currently the most comprehensive and unified resource for carbohydrate structures worldwide. GlycomeDB retains the links to the original databases and is updated at weekly intervals with the newest structures available from the source databases. The complete database can be downloaded freely or accessed through a Web-interface (www.glycome-db.org) that provides flexible and powerful search functionalities.


Assuntos
Carboidratos/química , Bases de Dados Factuais , Sequência de Carboidratos , Carboidratos/classificação , Glicômica , Integração de Sistemas
20.
Biol Chem ; 393(11): 1357-62, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23109548

RESUMO

During the EUROCarbDB project our group developed the GlycanBuilder and GlycoWorkbench glycoinformatics tools. This short communication summarizes the capabilities of these two tools and updates which have been made since the original publications in 2007 and 2008. GlycanBuilder is a tool that allows for the fast and intuitive drawing of glycan structures; this tool can be used standalone, embedded in web pages and can also be integrated into other programs. GlycoWorkbench has been designed to semi-automatically annotate glycomics data. This tool can be used to annotate mass spectrometry (MS) and MS/MS spectra of free oligosaccharides, N and O-linked glycans, GAGs (glycosaminoglycans) and glycolipids, as well as MS spectra of glycoproteins.


Assuntos
Glicômica/métodos , Glicoproteínas/química , Polissacarídeos/química , Software , Glicômica/tendências , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA