Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891798

RESUMO

Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease characterized by self-immune tolerance breakdown and the production of autoantibodies, causing the deposition of immune complexes and triggering inflammation and immune-mediated damage. SLE pathogenesis involves genetic predisposition and a combination of environmental factors. Clinical manifestations are variable, making an early diagnosis challenging. Heat shock proteins (Hsps), belonging to the chaperone system, interact with the immune system, acting as pro-inflammatory factors, autoantigens, as well as immune tolerance promoters. Increased levels of some Hsps and the production of autoantibodies against them are correlated with SLE onset and progression. The production of these autoantibodies has been attributed to molecular mimicry, occurring upon viral and bacterial infections, since they are evolutionary highly conserved. Gut microbiota dysbiosis has been associated with the occurrence and severity of SLE. Numerous findings suggest that proteins and metabolites of commensal bacteria can mimic autoantigens, inducing autoimmunity, because of molecular mimicry. Here, we propose that shared epitopes between human Hsps and those of gut commensal bacteria cause the production of anti-Hsp autoantibodies that cross-react with human molecules, contributing to SLE pathogenesis. Thus, the involvement of the chaperone system, gut microbiota dysbiosis, and molecular mimicry in SLE ought to be coordinately studied.


Assuntos
Disbiose , Microbioma Gastrointestinal , Lúpus Eritematoso Sistêmico , Mimetismo Molecular , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/microbiologia , Lúpus Eritematoso Sistêmico/metabolismo , Humanos , Mimetismo Molecular/imunologia , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/imunologia , Proteínas de Choque Térmico/imunologia , Proteínas de Choque Térmico/metabolismo , Autoanticorpos/imunologia , Animais , Autoantígenos/imunologia , Autoantígenos/metabolismo , Autoimunidade
2.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791432

RESUMO

Glioblastoma multiforme (GBM) is a very aggressive and lethal primary brain cancer in adults. The multifaceted nature of GBM pathogenesis, rising from complex interactions between cells and the tumor microenvironment (TME), has posed great treatment challenges. Despite significant scientific efforts, the prognosis for GBM remains very poor, even after intensive treatment with surgery, radiation, and chemotherapy. Efficient GBM management still requires the invention of innovative treatment strategies. There is a strong necessity to complete cancer in vitro studies and in vivo studies to properly evaluate the mechanisms of tumor progression within the complex TME. In recent years, the animal models used to study GBM tumors have evolved, achieving highly invasive GBM models able to provide key information on the molecular mechanisms of GBM onset. At present, the most commonly used animal models in GBM research are represented by mammalian models, such as mouse and canine ones. However, the latter present several limitations, such as high cost and time-consuming management, making them inappropriate for large-scale anticancer drug evaluation. In recent years, the zebrafish (Danio rerio) model has emerged as a valuable tool for studying GBM. It has shown great promise in preclinical studies due to numerous advantages, such as its small size, its ability to generate a large cohort of genetically identical offspring, and its rapid development, permitting more time- and cost-effective management and high-throughput drug screening when compared to mammalian models. Moreover, due to its transparent nature in early developmental stages and genetic and anatomical similarities with humans, it allows for translatable brain cancer research and related genetic screening and drug discovery. For this reason, the aim of the present review is to highlight the potential of relevant transgenic and xenograft zebrafish models and to compare them to the traditionally used animal models in GBM research.


Assuntos
Neoplasias Encefálicas , Modelos Animais de Doenças , Glioblastoma , Peixe-Zebra , Animais , Glioblastoma/patologia , Glioblastoma/genética , Humanos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Microambiente Tumoral
3.
Int J Mol Sci ; 25(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542389

RESUMO

Glioblastoma multiforme (GBM) is a malignancy of bad prognosis, and advances in early detection and treatment are needed. GBM is heterogenous, with varieties differing in malignancy within a tumor of a patient and between patients. Means are needed to distinguish these GMB forms, so that specific strategies can be deployed for patient management. We study the participation of the chaperone system (CS) in carcinogenesis. The CS is dynamic, with its members moving around the body in extracellular vesicles (EVs) and interacting with components of other physiological systems in health and disease, including GBM. Here, we describe the finding of high amounts of Hsp70 (HSPA1A) and the calcitonin receptor protein (CTR) in EVs in patients with GBM. We present a standardized protocol for collecting, purifying, and characterizing EVs carrying Hsp70 and CTR in plasma-derived EVs from patients with GBM. EVs from GBM patients were obtained just before tumor ablative surgery (T0) and 7 days afterwards (T1); Hsp70 was highly elevated at T0 and less so at T1, and CTR was greatly increased at T0 and reduced to below normal values at T1. Our results encourage further research to assess Hsp70 and CTR as biomarkers for differentiating tumor forms and to determine their roles in GBM carcinogenesis.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Humanos , Glioblastoma/metabolismo , Receptores da Calcitonina/metabolismo , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Neoplasias Encefálicas/metabolismo
4.
FASEB J ; 36(9): e22525, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36004615

RESUMO

Mechanisms and consequences of gasdermin D (GSDMD) activation in cigarette smoke (CS)-associated inflammation and lung disease are unknown. GSDMD is a downstream effector of caspase-1, -8, and -4. Upon cleavage, GSDMD generates pores into cell membranes. Different degrees of GSDMD activation are associated with a range of physiological outputs ranging from cell hyperactivation to pyroptosis. We have previously reported that in human monocyte-derived macrophages CS extract (CSE) inhibits the NLRP3 inflammasome and shifts the response to lipopolysaccharide (LPS) towards the TLR4-TRIF axis leading to activation of caspase-8, which, in turn, activates caspase-1. In the present work, we investigated whether other ASC-dependent inflammasomes could be involved in caspase activation by CSE and whether caspase activation led to GSDMD cleavage and other downstream effects. Presented results demonstrate that CSE promoted ASC-independent activation of caspase-1 leading to GSDMD cleavage and increased cell permeability, in the absence of cell death. GSDMD cleavage was strongly enhanced upon stimulation with LPS+CSE, suggesting a synergistic effect between the two stimuli. Noteworthy, CSE promoted LPS internalization leading to caspase-4 activation, thus contributing to increased GSDMD cleavage. Caspase-dependent GSDMD cleavage was associated with mitochondrial superoxide generation. Increased cleaved GSDMD was found in lung macrophages of smokers compared to ex-smokers and non-smoking controls. Our findings revealed that ASC-independent activation of caspase-1, -4, and -8 and GSDMD cleavage upon exposure to CS may contribute to macrophage dysfunction and feed the chronic inflammation observed in the smokers' lung.


Assuntos
Caspases Iniciadoras/metabolismo , Fumar Cigarros , Inflamassomos , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Caspase 1/metabolismo , Caspases/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nicotiana/metabolismo
5.
Int J Mol Sci ; 24(15)2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569505

RESUMO

Inflammatory bowel diseases (IBDs) represent chronic idiopathic disorders, including Crohn's disease (CD) and ulcerative colitis (UC), in which one of the trigger factors is represented by aberrant immune interactions between the intestinal epithelium and the intestinal microbiota. The involvement of heat shock proteins (HSPs) as etiological and pathogenetic factors is becoming of increasing interest. HSPs were found to be differentially expressed in the intestinal tissues and sera of patients with CD and UC. It has been shown that HSPs can play a dual role in the disease, depending on the stage of progression. They can support the inflammatory and fibrosis process, but they can also act as protective factors during disease progression or before the onset of one of the worst complications of IBD, colorectal cancer. Furthermore, HSPs are able to mediate the interaction between the intestinal microbiota and intestinal epithelial cells. In this work, we discuss the involvement of HSPs in IBD considering their genetic, epigenetic, immune and molecular roles, referring to the most recent works present in the literature. With our review, we want to shed light on the importance of further exploring the role of HSPs, or even better, the role of the molecular chaperone system (CS), in IBD: various molecules of the CS including HSPs may have diagnostic, prognostic and therapeutic potential, promoting the creation of new drugs that could overcome the side-effects of the therapies currently used.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Proteínas de Choque Térmico/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colite Ulcerativa/tratamento farmacológico , Intestinos
6.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012578

RESUMO

Salivary gland tumors represent a serious medical problem and new tools for differential diagnosis and patient monitoring are needed. Here, we present data and discuss the potential of molecular chaperones as biomarkers and therapeutic targets, focusing on Hsp10 and Hsp90. The salivary glands are key physiological elements but, unfortunately, the information and the means available for the management of their pathologies, including cancer, are scarce. Progress in the study of carcinogenesis has occurred on various fronts lately, one of which has been the identification of the chaperone system (CS) as a physiological system with presence in all cells and tissues (including the salivary glands) that plays a role in tumor-cell biology. The chief components of the CS are the molecular chaperones, some of which belong to families of evolutionarily related molecules named heat shock protein (Hsp). We are quantifying and mapping these molecular chaperones in salivary glands to determine their possible role in the carcinogenetic mechanisms in these glands and to assess their potential as diagnostic biomarkers and therapeutic targets. Here, we report recent findings on Hsp10 and Hsp90 and show that the quantitative and topographic patterns of tissue Hsp90 are distinctive of malignant tumors and differentiate benign from malignant lesions. The Hsp90 results show a correlation between quantity of chaperone and tumor progression, which in turn calls for negative chaperonotherapy, namely, elimination/inhibition of the chaperone to stop the tumor. We found that in vitro, the Hsp90 inhibitor Ganetespib is cytotoxic for the salivary gland UM-HACC-2A cell line. The drug, by interfering with the pro-survival NF-κB pathway, hampers cellular proliferation and migration, and favors apoptosis, and can, therefore, be considered a suitable candidate for future experimentation to develop a treatment for salivary gland tumors.


Assuntos
Antineoplásicos , Neoplasias das Glândulas Salivares , Antineoplásicos/farmacologia , Diagnóstico Diferencial , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares , Neoplasias das Glândulas Salivares/diagnóstico , Neoplasias das Glândulas Salivares/terapia , Glândulas Salivares/metabolismo
7.
Int J Mol Sci ; 23(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35887137

RESUMO

Breast cancer (BC) is a major public health problem, with key pieces of information needed for developing preventive and curative measures still missing. For example, the participation of the chaperone system (CS) in carcinogenesis and anti-cancer responses is poorly understood, although it can be predicted to be a crucial factor in these mechanisms. The chief components of the CS are the molecular chaperones, and here we discuss four of them, Hsp27, Hsp60, Hsp70, and Hsp90, focusing on their pro-carcinogenic roles in BC and potential for developing anti-BC therapies. These chaperones can be targets of negative chaperonotherapy, namely the elimination/blocking/inhibition of the chaperone(s) functioning in favor of BC, using, for instance, Hsp inhibitors. The chaperones can also be employed in immunotherapy against BC as adjuvants, together with BC antigens. Extracellular vesicles (EVs) in BC diagnosis and management are also briefly discussed, considering their potential as easily accessible carriers of biomarkers and as shippers of anti-cancer agents amenable to manipulation and controlled delivery. The data surveyed from many laboratories reveal that, to enhance the understanding of the role of the CS in BS pathogenesis, one must consider the CS as a physiological system, encompassing diverse members throughout the body and interacting with the ubiquitin-proteasome system, the chaperone-mediated autophagy machinery, and the immune system (IS). An integrated view of the CS, including its functional partners and considering its highly dynamic nature with EVs transporting CS components to reach all the cell compartments in which they are needed, opens as yet unexplored pathways leading to carcinogenesis that are amenable to interference by anti-cancer treatments centered on CS components, such as the molecular chaperones.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Carcinogênese , Chaperonina 60 , Feminino , Proteínas de Choque Térmico HSP27 , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos
8.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919591

RESUMO

Thyroid cancers are the most common of the endocrine system malignancies and progress must be made in the areas of differential diagnosis and treatment to improve patient management. Advances in the understanding of carcinogenic mechanisms have occurred in various fronts, including studies of the chaperone system (CS). Components of the CS are found to be quantitatively increased or decreased, and some correlations have been established between the quantitative changes and tumor type, prognosis, and response to treatment. These correlations provide the basis for identifying distinctive patterns useful in differential diagnosis and for planning experiments aiming at elucidating the role of the CS in tumorigenesis. Here, we discuss studies of the CS components in various thyroid cancers (TC). The chaperones belonging to the families of the small heat-shock proteins Hsp70 and Hsp90 and the chaperonin of Group I, Hsp60, have been quantified mostly by immunohistochemistry and Western blot in tumor and normal control tissues and in extracellular vesicles. Distinctive differences were revealed between the various thyroid tumor types. The most frequent finding was an increase in the chaperones, which can be attributed to the augmented need for chaperones the tumor cells have because of their accelerated metabolism, growth, and division rate. Thus, chaperones help the tumor cell rather than protect the patient, exemplifying chaperonopathies by mistake or collaborationism. This highlights the need for research on chaperonotherapy, namely the development of means to eliminate/inhibit pathogenic chaperones.


Assuntos
Chaperonas Moleculares/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Animais , Chaperonina 60/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos
10.
PLoS Biol ; 15(3): e2001951, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28358805

RESUMO

Fasting reduces glucose levels and protects mice against chemotoxicity, yet drugs that promote hyperglycemia are widely used in cancer treatment. Here, we show that dexamethasone (Dexa) and rapamycin (Rapa), commonly administered to cancer patients, elevate glucose and sensitize cardiomyocytes and mice to the cancer drug doxorubicin (DXR). Such toxicity can be reversed by reducing circulating glucose levels by fasting or insulin. Furthermore, glucose injections alone reversed the fasting-dependent protection against DXR in mice, indicating that elevated glucose mediates, at least in part, the sensitizing effects of rapamycin and dexamethasone. In yeast, glucose activates protein kinase A (PKA) to accelerate aging by inhibiting transcription factors Msn2/4. Here, we show that fasting or glucose restriction (GR) regulate PKA and AMP-activated protein kinase (AMPK) to protect against DXR in part by activating the mammalian Msn2/4 ortholog early growth response protein 1 (EGR1). Increased expression of the EGR1-regulated cardioprotective peptides atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in heart tissue may also contribute to DXR resistance. Our findings suggest the existence of a glucose-PKA pathway that inactivates conserved zinc finger stress-resistance transcription factors to sensitize cells to toxins conserved from yeast to mammals. Our findings also describe a toxic role for drugs widely used in cancer treatment that promote hyperglycemia and identify dietary interventions that reverse these effects.


Assuntos
Antineoplásicos/farmacologia , Dexametasona/farmacologia , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Jejum/metabolismo , Glucose/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Fator Natriurético Atrial/metabolismo , Cardiotoxinas/toxicidade , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoproteção/efeitos dos fármacos , Dieta , Feminino , Hiperglicemia/patologia , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Peptídeo Natriurético Encefálico/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Fatores de Tempo
11.
Hepatology ; 67(2): 636-650, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28913935

RESUMO

Hepatocellular carcinomas (HCC) contain a subpopulation of cancer stem cells (CSCs), which exhibit stem cell-like features and are responsible for tumor relapse, metastasis, and chemoresistance. The development of effective treatments for HCC will depend on a molecular-level understanding of the specific pathways driving CSC emergence and stemness. MacroH2A1 is a variant of the histone H2A and an epigenetic regulator of stem-cell function, where it promotes differentiation and, conversely, acts as a barrier to somatic-cell reprogramming. Here, we focused on the role played by the histone variant macroH2A1 as a potential epigenetic factor promoting CSC differentiation. In human HCC sections we uncovered a significant correlation between low frequencies of macroH2A1 staining and advanced, aggressive HCC subtypes with poorly differentiated tumor phenotypes. Using HCC cell lines, we found that short hairpin RNA-mediated macroH2A1 knockdown induces acquisition of CSC-like features, including the growth of significantly larger and less differentiated tumors when injected into nude mice. MacroH2A1-depleted HCC cells also exhibited reduced proliferation, resistance to chemotherapeutic agents, and stem-like metabolic changes consistent with enhanced hypoxic responses and increased glycolysis. The loss of macroH2A1 increased expression of a panel of stemness-associated genes and drove hyperactivation of the nuclear factor kappa B p65 pathway. Blocking phosphorylation of nuclear factor kappa B p65 on Ser536 inhibited the emergence of CSC-like features in HCC cells knocked down for macroH2A1. Conclusion: The absence of histone variant macroH2A1 confers a CSC-like phenotype to HCC cells in vitro and in vivo that depends on Ser536 phosphorylation of nuclear factor kappa B p65; this pathway may hold valuable targets for the development of CSC-focused treatments for HCC. (Hepatology 2018;67:636-650).


Assuntos
Carcinoma Hepatocelular/patologia , Histonas/fisiologia , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/patologia , Proliferação de Células , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Fosforilação , Fator de Transcrição RelA/metabolismo
12.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614427

RESUMO

Dysbiosis has been associated with the onset of several chronic autoimmune or inflammatory pathologies (e.g., inflammatory bowel diseases-IBD), because of its primary role in the establishment of a chronic inflammatory process leading to tissue damage. Inflammatory bowel diseases can even involve areas far away from the gut, such as the extraintestinal manifestations involving the oral cavity with the onset of aphthous-like ulcers (ALU). Studies carried out on animal models have shown that intestinal dysbiosis may be related to the development of autoimmune diseases, even if the mechanisms involved are not yet well known. The aim of this paper is to verify the hypothesis that in inflammatory bowel diseases patients, aphthous-like ulcers are the result of the concomitance of intestinal dysbiosis and other events, e.g., the microtraumas, occurring in the oral mucosa, and that ex adiuvantibus therapy with probiotics can be employed to modify the natural course of the aphthous-like ulcers.


Assuntos
Doenças Inflamatórias Intestinais/dietoterapia , Probióticos/administração & dosagem , Estomatite Aftosa/dietoterapia , Animais , Modelos Animais de Doenças , Disbiose/dietoterapia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Probióticos/farmacologia , Estomatite Aftosa/microbiologia
13.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514388

RESUMO

The thyroid is a major component of the endocrine system and its pathology can cause serious diseases, e.g., papillary carcinoma (PC). However, the carcinogenic mechanisms are poorly understood and clinical useful biomarkers are scarce. Therefore, we determined if there are quantitative patterns of molecular chaperones in the tumor tissue and circulating exosomes that may be useful in diagnosis and provide clues on their participation in carcinogenesis. Hsp27, Hsp60, Hsp70, and Hsp90 were quantified by immunohistochemistry in PC, benign goiter (BG), and normal peritumoral tissue (PT). The same chaperones were assessed in plasma exosomes from PC and BG patients before and after ablative surgery, using Western blotting. Hsp27, Hsp60, and Hsp90 were increased in PC in comparison with PT and BG but no differences were found for Hsp70. Similarly, exosomal levels of Hsp27, Hsp60, and Hsp90 were higher in PC than in BG, and those in PC were higher before ablative surgery than after it. Hsp27, Hsp60, and Hsp90 show distinctive quantitative patterns in thyroid tissue and circulating exosomes in PC as compared with BG, suggesting some implication in the carcinogenesis of these chaperones and indicating their potential as biomarkers for clinical applications.


Assuntos
Exossomos/metabolismo , Proteínas de Choque Térmico/metabolismo , Glândula Tireoide/imunologia , Glândula Tireoide/patologia , Carcinoma Papilar/imunologia , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Exossomos/ultraestrutura , Feminino , Bócio/metabolismo , Bócio/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Glândula Tireoide/metabolismo
14.
J Cell Physiol ; 233(2): 1202-1212, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28471474

RESUMO

Hepatocellular carcinoma (HCC) has a poor outcome. Most HCCs develop in the context of liver fibrosis and cirrhosis caused by chronic inflammation. Short-term fasting approaches enhance the activity of chemotherapy in preclinical cancer models, other than HCC. Multi-tyrosine kinase inhibitor Sorafenib is the mainstay of treatment in HCC. However, its benefit is frequently short-lived. Whether fasting can alleviate liver fibrosis and whether combining fasting with Sorafenib is beneficial remains unknown. A 24 hr fasting (2% serum, 0.1% glucose)-induced changes on human hepatic stellate cells (HSC) LX-2 proliferation/viability/cell cycle were assessed by MTT and flow cytometry. Expression of lypolysaccharide (LPS)-induced activation markers (vimentin, αSMA) was evaluated by qPCR and immunoblotting. Liver fibrosis and inflammation were evaluated in a mouse model of steatohepatitis exposed to cycles of fasting, by histological and biochemical analyses. A 24 hr fasting-induced changes were also analyzed on the proliferation/viability/glucose uptake of human HCC cells exposed to Sorafenib. An expression panel of genes involved in survival, inflammation, and metabolism was examined by qPCR in HCC cells exposed to fasting and/or Sorafenib. Fasting decreased the proliferation and the activation of HSC. Repeated cycles of short term starvation were safe in mice but did not improve fibrosis. Fasting synergized with Sorafenib in hampering HCC cell growth and glucose uptake. Finally, fasting normalized the expression levels of genes which are commonly altered by Sorafenib in HCC cells. Fasting or fasting-mimicking diet diets should be evaluated in preclinical studies as a mean to potentiate the activity of Sorafenib in clinical use.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Jejum/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Niacinamida/análogos & derivados , Compostos de Fenilureia/farmacologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Células Hep G2 , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Lipopolissacarídeos/farmacologia , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos C57BL , Niacinamida/farmacologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Sorafenibe , Fatores de Tempo
15.
Int J Mol Sci ; 19(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189598

RESUMO

Gliomas have poor prognosis no matter the treatment applied, remaining an unmet clinical need. As background for a substantial change in this situation, this review will focus on the following points: (i) the steady progress in establishing the role of molecular chaperones in carcinogenesis; (ii) the recent advances in the knowledge of miRNAs in regulating gene expression, including genes involved in carcinogenesis and genes encoding chaperones; and (iii) the findings about exosomes and their cargo released by tumor cells. We would like to trigger a discussion about the involvement of exosomal chaperones and miRNAs in gliomagenesis. Chaperones may be either targets for therapy, due to their tumor-promoting activity, or therapeutic agents, due to their antitumor growth activity. Thus, chaperones may well represent a Janus-faced approach against tumors. This review focuses on extracellular chaperones as part of exosomes' cargo, because of their potential as a new tool for the diagnosis and management of gliomas. Moreover, since exosomes transport chaperones and miRNAs (the latter possibly related to chaperone gene expression in the recipient cell), and probably deliver their cargo in the recipient cells, a new area of investigation is now open, which is bound to generate significant advances in the understanding and treatment of gliomas.


Assuntos
Exossomos/metabolismo , Glioma/genética , Glioma/metabolismo , MicroRNAs/genética , Animais , Transporte Biológico , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Matriz Extracelular , Glioma/diagnóstico , Glioma/mortalidade , Humanos , Chaperonas Moleculares/metabolismo
16.
J Cell Mol Med ; 21(8): 1636-1647, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28244681

RESUMO

The aim of this study was to investigate whether nandrolone decanoate (ND) use affects testosterone production and testicular morphology in a model of trained and sedentary mice. A group of mice underwent endurance training while another set led a sedentary lifestyle and were freely mobile within cages. All experimental groups were treated with either ND or peanut oil at different doses for 6 weeks. Testosterone serum levels were measured via liquid chromatography-mass spectrometry. Western blot analysis and quantitative real-time PCR were utilized to determine gene and protein expression levels of the primary enzymes implicated in testosterone biosynthesis and gene expression levels of the blood-testis barrier (BTB) components. Immunohistochemistry and immunofluorescence were conducted for testicular morphological evaluation. The study demonstrated that moderate to high doses of ND induced a diminished serum testosterone level and altered the expression level of the key steroidogenic enzymes involved in testosterone biosynthesis. At the morphological level, ND induced degradation of the BTB by targeting the tight junction protein-1 (TJP1). ND stimulation deregulated metalloproteinase-9, metalloproteinase-2 (MMP-2) and the tissue inhibitor of MMP-2. Moreover, ND administration resulted in a mislocalization of mucin-1. In conclusion, ND abuse induces a decline in testosterone production that is unable to regulate the internalization and redistribution of TJP1 and may induce the deregulation of other BTB constituents via the inhibition of MMP-2. ND may well be considered as both a potential inducer of male infertility and a potential risk factor to a low endogenous bioavailable testosterone.


Assuntos
Anabolizantes/farmacologia , Barreira Hematotesticular/efeitos dos fármacos , Nandrolona/análogos & derivados , Condicionamento Físico Animal , Testículo/efeitos dos fármacos , Testosterona/antagonistas & inibidores , Animais , Barreira Hematotesticular/metabolismo , Regulação da Expressão Gênica , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Mucina-1/genética , Mucina-1/metabolismo , Nandrolona/farmacologia , Decanoato de Nandrolona , Transporte Proteico/efeitos dos fármacos , Comportamento Sedentário , Transdução de Sinais , Testículo/metabolismo , Testosterona/biossíntese , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
17.
J Cell Physiol ; 231(10): 2218-23, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26868633

RESUMO

Mild exercise training may positively affect the course of Duchenne Muscular Dystrophy (DMD). Training causes mild bronchial epithelial injury in both humans and mice, but no study assessed the effects of exercise in mdx mice, a well known model of DMD. The airway epithelium was examined in mdx (C57BL/10ScSn-Dmdmdx) mice, and in wild type (WT, C57BL/10ScSc) mice either under sedentary conditions (mdx-SD, WT-SD) or during mild exercise training (mdx-EX, WT-EX). At baseline, and after 30 and 45 days of training (5 d/wk for 6 weeks), epithelial morphology and markers of regeneration, apoptosis, and cellular stress were assessed. The number of goblet cells in bronchial epithelium was much lower in mdx than in WT mice under all conditions. At 30 days, epithelial regeneration (PCNA positive cells) was higher in EX than SD animals in both groups; however, at 45 days, epithelial regeneration decreased in mdx mice irrespective of training, and the percentage of apoptotic (TUNEL positive) cells was higher in mdx-EX than in WT-EX mice. Epithelial expression of HSP60 (marker of stress) progressively decreased, and inversely correlated with epithelial apoptosis (r = -0.66, P = 0.01) only in mdx mice. Lack of dystrophin in mdx mice appears associated with defective epithelial differentiation, and transient epithelial regeneration during mild exercise training. Hence, lack of dystrophin might impair repair in bronchial epithelium, with potential clinical consequences in DMD patients. J. Cell. Physiol. 231: 2218-2223, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Brônquios/metabolismo , Distrofina/metabolismo , Epitélio/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Animais , Distrofina/deficiência , Distrofina/genética , Expressão Gênica/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Regeneração
19.
Endocr Res ; 41(4): 317-324, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26906293

RESUMO

AIM: The purpose of the present study was to investigate the influence of endogenous glucagon-like peptide-2 (GLP-2) on lipid profile in mice fed a standard diet (STD) or a high-fat diet (HFD). MATERIALS AND METHODS: HFD- and age-matched STD mice were injected once a day with GLP-2 (3-33), a GLP-2 receptor (GLP-2R) antagonist, or vehicle for 4 weeks. RESULTS: HFD mice displayed increased intrahepatic lipid concentration and hepatic steatosis and higher plasma concentrations of cholesterol, LDL, AST, and ALT than STD mice. No difference was observed in lipid fecal elimination. In STD mice, the chronic treatment with GLP-2 (3-33) did not affect any parameter, while in HFD mice, it enhanced plasma triglycerides, cholesterol, ALT, and AST and reduced HDL, it increased intrahepatic lipid concentration, and it worsened the hepatic steatosis degree, without affecting lipid fecal elimination. CONCLUSIONS: The present results suggest that GLP-2R antagonism worsens lipid disorders in HFD mice, and endogenous GLP-2 might even exert a defensive role against lipid imbalance.


Assuntos
Dieta Hiperlipídica , Peptídeo 2 Semelhante ao Glucagon/farmacologia , Lipídeos/sangue , Doenças Metabólicas/sangue , Fragmentos de Peptídeos/farmacologia , Animais , Peptídeo 2 Semelhante ao Glucagon/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/administração & dosagem
20.
J Cell Physiol ; 230(12): 3029-36, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25967277

RESUMO

Glucagon like peptide-2 (GLP-2) is a gastrointestinal hormone released in response to dietary nutrients, which acts through a specific receptor, the GLP-2 receptor (GLP-2R). The physiological effects of GLP-2 are multiple, involving also the intestinal adaptation to high fat diet (HFD). In consideration of the well-known relationship between chronic HFD and impaired glucose metabolism, in the present study we examined if the blocking of the GLP-2 signaling by chronic treatment with the GLP-2R antagonist, GLP-2 (3-33), leads to functional consequences in the regulation of glucose metabolism in HFD-fed mice. Compared with animals fed standard diet (STD), mice at the 10th week of HFD showed hyperglycaemia, glucose intolerance, high plasma insulin level after glucose load, increased pancreas weight and ß cell expansion, but not insulin resistance. In HFD fed mice, GLP-2 (3-33) treatment for 4 weeks (from the 6th to the 10th week of diet) did not affect fasting glycaemia, but it significantly increased the glucose intolerance, both fasting and glucose-induced insulin levels, and reduced the sensitivity to insulin leading to insulin-resistance. In GLP-2 (3-33)-treated HFD mice pancreas was significantly heavier and displayed a significant increase in ß-cell mass in comparison with vehicle-treated HFD mice. In STD mice, the GLP-2 (3-33) treatment did not affect fasted or glucose-stimulated glycemia, insulin, insulin sensitivity, pancreas weight and beta cell mass. The present study suggests that endogenous GLP-2 may act as a protective factor against the dysregulation of the glucose metabolism that occurs in HFD mice, because GLP-2 (3-33) worsens glucose metabolism disorders.


Assuntos
Glicemia/metabolismo , Dieta Hiperlipídica , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Transtornos do Metabolismo de Glucose/prevenção & controle , Células Secretoras de Insulina/metabolismo , Animais , Biomarcadores/sangue , Modelos Animais de Doenças , Peptídeo 2 Semelhante ao Glucagon/antagonistas & inibidores , Peptídeo 2 Semelhante ao Glucagon/toxicidade , Transtornos do Metabolismo de Glucose/sangue , Transtornos do Metabolismo de Glucose/etiologia , Homeostase , Antagonistas de Hormônios/toxicidade , Insulina/sangue , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Masculino , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/toxicidade , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA