Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(3): e2212849120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36630452

RESUMO

Protein folding is crucial for biological activity. Proteins' failure to fold correctly underlies various pathological processes, including amyloidosis, the aggregation of insoluble proteins (e.g., lysozymes) in organs. The exact conditions that trigger the structural transition of amyloids into ß-sheet-rich aggregates are poorly understood, as is the case for the amyloidogenic self-assembly pathway. Ultrasound is routinely used to destabilize a protein's structure and enhance amyloid growth. Here, we report on an unexpected ultrasound effect on lysozyme amyloid species at different stages of aggregation: ultrasound-induced structural perturbation gives rise to nonamyloidogenic folds. Our infrared and X-ray analyses of the chemical, mechanical, and thermal effects of sound on lysozyme's structure found, in addition to the expected ultrasound-induced damage, evidence of irreversible disruption of the ß-sheet fold of fibrillar lysozyme resulting in their structural transformation into monomers with no ß-sheets. This structural transition is reflected in changes in the kinetics of protein self-assembly, namely, either prolonged nucleation or accelerated fibril growth. Using solution X-ray scattering, we determined the structure, the mass fraction of lysozyme monomer, and the morphology of its filamentous assemblies formed under different sound parameters. A nanomechanical analysis of ultrasound-modified protein assemblies revealed a correlation between the ß-sheet content and elastic modulus of the protein material. Suppressing one of the ultrasound-derived effects allowed us to control the structural transformations of lysozyme. Overall, our comprehensive investigation establishes the boundary conditions under which ultrasound damages protein structure and fold. This knowledge can be utilized to impose medically desirable structural modifications on amyloid ß-sheet-rich proteins.


Assuntos
Amiloidose , Muramidase , Humanos , Muramidase/química , Peptídeos beta-Amiloides/química , Amiloide/química , Dobramento de Proteína
2.
Biochemistry ; 63(12): 1543-1552, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38787909

RESUMO

Hepatitis B virus (HBV) displays remarkable self-assembly capabilities that interest the scientific community and biotechnological industries as HBV is leading to an annual mortality of up to 1 million people worldwide (especially in Africa and Southeast Asia). When the ionic strength is increased, hepatitis B virus-like particles (VLPs) can assemble from dimers of the first 149 residues of the HBV capsid protein core assembly domain (Cp149). Using solution small-angle X-ray scattering, we investigated the disassembly of the VLPs by titrating guanidine hydrochloride (GuHCl). Measurements were performed with and without 1 M NaCl, added either before or after titrating GuHCl. Fitting the scattering curves to a linear combination of atomic models of Cp149 dimer (the subunit) and T = 3 and T = 4 icosahedral capsids revealed the mass fraction of the dimer in each structure in all the titration points. Based on the mass fractions, the variation in the dimer-dimer association standard free energy was calculated as a function of added GuHCl, showing a linear relation between the interaction strength and GuHCl concentration. Using the data, we estimated the energy barriers for assembly and disassembly and the critical nucleus size for all of the assembly reactions. Extrapolating the standard free energy to [GuHCl] = 0 showed an evident hysteresis in the assembly process, manifested by differences in the dimer-dimer association standard free energy obtained for the disassembly reactions compared with the equivalent assembly reactions. Similar hysteresis was observed in the energy barriers for assembly and disassembly and the critical nucleus size. The results suggest that above 1.5 M, GuHCl disassembled the capsids by attaching to the protein and adding steric repulsion, thereby weakening the hydrophobic attraction.


Assuntos
Capsídeo , Guanidina , Vírus da Hepatite B , Guanidina/química , Guanidina/farmacologia , Vírus da Hepatite B/química , Vírus da Hepatite B/fisiologia , Vírus da Hepatite B/efeitos dos fármacos , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Espalhamento a Baixo Ângulo , Multimerização Proteica , Modelos Moleculares , Montagem de Vírus/efeitos dos fármacos , Difração de Raios X
3.
Chemistry ; : e202401435, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739532

RESUMO

Artificial organelles serve as functional counterparts to natural organelles, which are primarily employed to artificially replicate, restore, or enhance cellular functions. While most artificial organelles exhibit basic functions, we diverge from this norm by utilizing poly(ferrocenylmethylethylthiocarboxypropylsilane) microcapsules (PFC MCs) to construct multifunctional artificial organelles through water/oil interfacial self-assembly. Within these PFC MCs, enzymatic cascades are induced through active molecular exchange across the membrane to mimic the functions of enzymes in mitochondria. We harness the inherent redox properties of the PFC polymer, which forms the membrane, to facilitate in-situ redox reactions similar to those supported by the inner membrane of natural mitochondria. Subsequent studies have demonstrated the interaction between PFC MCs and living cell including extended lifespans within various cell types. We anticipate that functional PFC MCs have the potential to serve as innovative platforms for organelle mimics capable of executing specific cellular functions.

4.
Chemistry ; : e202401700, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797874

RESUMO

In oxygen (O2)-dependent photodynamic therapy (PDT), photosensitizers absorb light energy, which is then transferred to ambient O2 and subsequently generates cytotoxic singlet oxygen (1O2). Therefore, the availability of O2 and the utilization efficiency of generated 1O2 are two significant factors that influence the effectiveness of PDT. However, tumor microenvironments (TMEs) characterized by hypoxia and limited utilization efficiency of 1O2 resulting from its short half-life and short diffusion distance significantly restrict the applicability of PDT for hypoxic tumors. To address these challenges, numerous macromolecular nano-assemblies (MNAs) have been designed to relieve hypoxia, utilize hypoxia or enhance the utilization efficiency of 1O2. Herein, we provide a comprehensive review on recent advancements achieved with MNAs in enhancing the effectiveness of O2-dependent PDT against hypoxic tumors.

5.
J Struct Biol ; 215(4): 108029, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741561

RESUMO

The current challenges of structural biophysics include determining the structure of large self-assembled complexes, resolving the structure of ensembles of complex structures and their mass fraction, and unraveling the dynamic pathways and mechanisms leading to the formation of complex structures from their subunits. Modern synchrotron solution X-ray scattering data enable simultaneous high-spatial and high-temporal structural data required to address the current challenges of structural biophysics. These data are complementary to crystallography, NMR, and cryo-TEM data. However, the analysis of solution scattering data is challenging; hence many different analysis tools, listed in the SAS Portal (http://smallangle.org/), were developed. In this review, we start by briefly summarizing classical X-ray scattering analyses providing insight into fundamental structural and interaction parameters. We then describe recent developments, integrating simulations, theory, and advanced X-ray scattering modeling, providing unique insights into the structure, energetics, and dynamics of self-assembled complexes. The structural information is essential for understanding the underlying physical chemistry principles leading to self-assembled supramolecular architectures and computational structural refinement.


Assuntos
Imageamento por Ressonância Magnética , Difração de Raios X , Raios X , Espalhamento a Baixo Ângulo
6.
Eur Phys J E Soft Matter ; 46(11): 107, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917241

RESUMO

Virus-like particles (VLPs) are noninfectious nanocapsules that can be used for drug delivery or vaccine applications. VLPs can be assembled from virus capsid proteins around a condensing agent, such as RNA, DNA, or a charged polymer. Electrostatic interactions play an important role in the assembly reaction. VLPs assemble from many copies of capsid protein, with a combinatorial number of intermediates. Hence, the mechanism of the reaction is poorly understood. In this paper, we combined solution small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (TEM), and computational modeling to determine the effect of ionic strength on the assembly of Simian Vacuolating Virus 40 (SV40)-like particles. We mixed poly(styrene sulfonate) with SV40 capsid protein pentamers at different ionic strengths. We then characterized the assembly product by SAXS and cryo-TEM. To analyze the data, we performed Langevin dynamics simulations using a coarse-grained model that revealed incomplete, asymmetric VLP structures consistent with the experimental data. We found that close to physiological ionic strength, [Formula: see text] VLPs coexisted with VP1 pentamers. At lower or higher ionic strengths, incomplete particles coexisted with pentamers and [Formula: see text] particles. Including the simulated structures was essential to explain the SAXS data in a manner that is consistent with the cryo-TEM images.


Assuntos
Proteínas do Capsídeo , Capsídeo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Estireno/análise , Estireno/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Vírus 40 dos Símios/química , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/metabolismo , Montagem de Vírus
7.
Nano Lett ; 20(9): 6598-6605, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32787154

RESUMO

Ordered mesoporous silica materials gain high interest because of their potential applications in catalysis, selective adsorption, separation, and controlled drug release. Due to their morphological characteristics, mainly the tunable, ordered nanometric pores, they can be utilized as supporting hosts for confined chemical reactions. Applications of these materials, however, are limited by structural design. Here, we present a new approach for the 3D printing of complex geometry silica objects with an ordered mesoporous structure by stereolithography. The process uses photocurable liquid compositions that contain a structure-directing agent, silica precursors, and elastomer-forming monomers that, after printing and calcination, form porous silica monoliths. The objects have extremely high surface area, 1900 m2/g, and very low density and are thermally and chemically stable. This work enables the formation of ordered porous objects having complex geometries that can be utilized in applications in both the industry and academia, overcoming the structural limitations associated with traditional processing methods.

8.
J Am Chem Soc ; 142(17): 7868-7882, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32233479

RESUMO

There are ∼1030 possible intermediates on the assembly path from hepatitis B capsid protein dimers to the 120-dimer capsid. If every intermediate was tested, assembly would often get stuck in an entropic trap and essentially every capsid would follow a unique assembly path. Yet, capsids assemble rapidly with minimal trapped intermediates, a realization of the Levinthal paradox. To understand the fundamental mechanisms of capsid assembly, it is critical to resolve the early stages of the reaction. We have used time-resolved small angle X-ray scattering, which is sensitive to solute size and shape and has millisecond temporal resolution. Scattering curves were fit to a thermodynamically curated library of assembly intermediates, using the principle of maximum entropy. Maximum entropy also provides a physical rationale for the selection of species. We found that the capsid assembly pathway was exquisitely sensitive to initial assembly conditions. With the mildest conditions tested, the reaction appeared to be two-state from dimer to 120-dimer capsid with some dimers-of-dimers and trimers-of-dimers. In slightly more aggressive conditions, we observed transient accumulation of a decamer-of-dimers and the appearance of 90-dimer capsids. In conditions where there is measurable kinetic trapping, we found that highly diverse early intermediates accumulated within a fraction of a second and propagated into long-lived kinetically trapped states (≥90-mer). In all cases, intermediates between 35 and 90 subunits did not accumulate. These results are consistent with the presence of low barrier paths that connect early and late intermediates and direct the ultimate assembly path to late intermediates where assembly can be paused.


Assuntos
Proteínas do Capsídeo/química , Montagem de Vírus/genética , Humanos
9.
J Virol ; 93(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31043524

RESUMO

Hepadnaviruses are hepatotropic enveloped DNA viruses with an icosahedral capsid. Hepatitis B virus (HBV) causes chronic infection in an estimated 240 million people; woodchuck hepatitis virus (WHV), an HBV homologue, has been an important model system for drug development. The dimeric capsid protein (Cp) has multiple functions during the viral life cycle and thus has become an important target for a new generation of antivirals. Purified HBV and WHV Cp spontaneously assemble into 120-dimer capsids. Though they have 65% identity, WHV Cp has error-prone assembly with stronger protein-protein association. We have taken advantage of the differences in assemblies to investigate the basis of assembly regulation. We determined the structures of the WHV capsid to 4.5-Å resolution by cryo-electron microscopy (cryo-EM) and of the WHV Cp dimer to 2.9-Å resolution by crystallography and examined the biophysical properties of the dimer. We found, in dimer, that the subdomain that makes protein-protein interactions is partially disordered and rotated 21° from its position in capsid. This subdomain is susceptible to proteolysis, consistent with local disorder. WHV assembly shows similar susceptibility to HBV antiviral molecules, suggesting that HBV assembly follows similar transitions. These data show that there is an entropic cost for assembly that is compensated for by the energetic gain of burying hydrophobic interprotein contacts. We propose a series of stages in assembly that incorporate a disorder-to-order transition and structural shifts. We suggest that a cascade of structural changes may be a common mechanism for regulating high-fidelity capsid assembly in HBV and other viruses.IMPORTANCE Virus capsids assemble spontaneously with surprisingly high fidelity. This requires strict geometry and a narrow range of association energies for these protein-protein interactions. It was hypothesized that requiring subunits to undergo a conformational change to become assembly active could regulate assembly by creating an energetic barrier and attenuating association. We found that woodchuck hepatitis virus capsid protein undergoes structural transitions between its dimeric and its 120-dimer capsid states. It is likely that the closely related hepatitis B virus capsid protein undergoes similar structural changes, which has implications for drug design. Regulation of assembly by structural transition may be a common mechanism for many viruses.


Assuntos
Capsídeo/química , Vírus da Hepatite B da Marmota/química , Multimerização Proteica , Proteínas do Core Viral/química , Montagem de Vírus , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Entropia , Vírus da Hepatite B da Marmota/fisiologia , Vírus da Hepatite B da Marmota/ultraestrutura
10.
Langmuir ; 36(36): 10715-10724, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32787004

RESUMO

The interaction between lipid membranes and ions is associated with a range of key physiological processes. Most earlier studies have focused on the interaction of lipids with cations, while the specific effects of the anions have been largely overlooked. Owing to dissolved atmospheric carbon dioxide, bicarbonate is an important ubiquitous anion in aqueous media. In this paper, we report on the effect of bicarbonate anions on the interactions between dipolar lipid membranes in the presence of previously adsorbed calcium cations. Using a combination of solution X-ray scattering, osmotic stress, and molecular dynamics simulations, we followed the interactions between 1,2-didodecanoyl-sn-glycero-3-phosphocholine (DLPC) lipid membranes that were dialyzed against CaCl2 solutions in the presence and absence of bicarbonate anions. Calcium cations adsorbed onto DLPC membranes, charge them, and lead to their swelling. In the presence of bicarbonate anions, however, the calcium cations can tightly couple one dipolar DLPC membrane to the other and form a highly condensed and dehydrated lamellar phase with a repeat distance of 3.45 ± 0.02 nm. Similar tight condensation and dehydration has only been observed between charged membranes in the presence of multivalent counterions. Bridging between bilayers by calcium bicarbonate complexes induced this arrangement. Furthermore, in this condensed phase, lipid molecules and adsorbed ions were arranged in a two-dimensional oblique lattice.

11.
Soft Matter ; 16(11): 2803-2814, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32104873

RESUMO

Viruses are remarkable self-assembled nanobiomaterial-based machines, exposed to a wide range of pH values. Extreme pH values can induce dramatic structural changes, critical for the function of the virus nanoparticles, including assembly and genome uncoating. Tuning cargo-capsid interactions is essential for designing virus-based delivery systems. Here we show how pH controls the structure and activity of wild-type simian virus 40 (wtSV40) and the interplay between its cargo and capsid. Using cryo-TEM and solution X-ray scattering, we found that wtSV40 was stable between pH 5.5 and 9, and only slightly swelled with increasing pH. At pH 3, the particles aggregated, while capsid protein pentamers continued to coat the virus cargo but lost their positional correlations. Infectivity was only partly lost after the particles were returned to pH 7. At pH 10 or higher, the particles were unstable, lost their infectivity, and disassembled. Using time-resolved experiments we discovered that disassembly began by swelling of the particles, poking a hole in the capsid through which the genetic cargo escaped, followed by a slight shrinking of the capsids and complete disassembly. These findings provide insight into the fundamental intermolecular forces, essential for SV40 function, and for designing virus-based nanobiomaterials, including delivery systems and antiviral drugs.


Assuntos
Proteínas do Capsídeo/genética , Genoma Viral/genética , Nanopartículas/química , Vírus 40 dos Símios/química , Proteínas do Capsídeo/química , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Nanopartículas/uso terapêutico , Vírus 40 dos Símios/genética
12.
Proc Natl Acad Sci U S A ; 114(35): 9481-9486, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28808031

RESUMO

In this paper we propose an energy dissipation mechanism that is completely reliant on changes in the aggregation state of the phycobilisome light-harvesting antenna components. All photosynthetic organisms regulate the efficiency of excitation energy transfer (EET) to fit light energy supply to biochemical demands. Not many do this to the extent required of desert crust cyanobacteria. Following predawn dew deposition, they harvest light energy with maximum efficiency until desiccating in the early morning hours. In the desiccated state, absorbed energy is completely quenched. Time and spectrally resolved fluorescence emission measurements of the desiccated desert crust Leptolyngbya ohadii strain identified (i) reduced EET between phycobilisome components, (ii) shorter fluorescence lifetimes, and (iii) red shift in the emission spectra, compared with the hydrated state. These changes coincide with a loss of the ordered phycobilisome structure, evident from small-angle neutron and X-ray scattering and cryo-transmission electron microscopy data. Based on these observations we propose a model where in the hydrated state the organized rod structure of the phycobilisome supports directional EET to reaction centers with minimal losses due to thermal dissipation. In the desiccated state this structure is lost, giving way to more random aggregates. The resulting EET path will exhibit increased coupling to the environment and enhanced quenching.


Assuntos
Cianobactérias/fisiologia , Clima Desértico , Microbiologia do Solo , Complexos de Proteínas Captadores de Luz , Fotossíntese/fisiologia , Ficobilissomas/fisiologia
13.
Langmuir ; 35(30): 9694-9703, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31283884

RESUMO

When aqueous salt solutions contain multivalent ions (like Ca2+ or Mg2+), strong correlation effects may lead to ion-bridging, net attraction, and tight-coupling between like-charged interfaces. To examine the effects of surface charge density, temperature, salt type, and salt concentration on the structures of tightly coupled charged interfaces, we have used mixed lipid membranes, containing either saturated or unsaturated tails in the presence of multivalent ions. We discovered that tightly coupled membrane lamellar phases, dominated by attractive interactions, coexisted with weakly coupled lamellar phases, dominated by repulsive interactions. To control the membrane charge density, we mixed lipids with negatively charged headgroups, DLPS and DOPS, with their zwitterionic analogue having the same tails, DLPC and DOPC, respectively. Using solution X-ray scattering we measured the lamellar repeat distance, D, at different ion concentrations, temperatures, and membrane charge densities. The multivalent ions tightly coupled the mixed lipid bilayers whose charged lipid molar fraction was between 0.1 and 1. The repeat distance of the tightly coupled phase was about 4 nm for the DLPS/DLPC mixtures and about 5 nm for the DOPS/DOPC mixtures. In this phase, the repeat distance slightly increased with increasing temperature and decreased with increasing charge density. When the molar fraction of charged lipid was 0.1 or 0.25, a less tightly coupled phase coexisted with the tightly coupled phase. The weakly coupled lamellar phase had significantly larger D values, although they were consistently shorter than the D values in monovalent salt solutions with similar screening lengths.


Assuntos
Cátions Bivalentes/química , Membrana Celular/química , Fosfolipídeos/química , Água/química
14.
Langmuir ; 35(48): 15970-15978, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31539262

RESUMO

In this minireview, which is part of a special issue in honor of Jacob N. Israelachvili's remarkable research career on intermolecular forces and interfacial science, we present studies of structures, phase behavior, and forces in reaction mixtures of microtubules (MTs) and tubulin oligomers with either intrinsically disordered protein (IDP) Tau, cationic vesicles, or the polyamine spermine (4+). Bare MTs consist of 13 protofilaments (PFs), on average, where each PF is made of a linear stack of αß-tubulin dimers (i.e., tubulin oligomers). We begin with a series of experiments which demonstrate the flexibility of PFs toward shape changes in response to local environmental cues. First, studies show that MT-associated protein (MAP) Tau controls the diameter of microtubules upon binding to the outer surface, implying a shape change in the cross-sectional area of PFs forming the MT perimeter. The diameter of a MT may also be controlled by the charge density of a lipid bilayer membrane that coats the outer surface. We further describe an experimental study where it is unexpectedly found that the biologically relevant polyamine spermine (+4e) is able to depolymerize taxol-stabilized microtubules with efficiency that increases with decreasing temperature. This MT destabilization drives a dynamical structural transition where inside-out curving of PFs, during the depolymerization peeling process, is followed by reassembly of ring-like curved PF building blocks into an array of helical inverted tubulin tubules. We finally turn to a very recent study on pressure-distance measurements in bundles of MTs employing the small-angle X-ray scattering (SAXS)-osmotic pressure technique, which complements the surface-forces-apparatus technique developed by Jacob N. Israelachvili. These latter studies are among the very few which are beginning to shed light on the precise nature of the interactions between MTs mediated by MAP Tau in 37 °C reaction mixtures containing GTP and lacking taxol.


Assuntos
Biopolímeros/química , Proteínas Intrinsicamente Desordenadas/química , Microtúbulos/química , Tubulina (Proteína)/química , Proteínas tau/química , Cátions , Paclitaxel/química , Conformação Proteica
15.
Biochemistry ; 57(43): 6153-6165, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30247898

RESUMO

Single and double tubulin rings were studied under a range of conditions and during microtubule (MT) assembly and disassembly. Here, tubulin was purified from porcine brain and used without any further modifications or additives that promote ring assembly. The structure of single GDP-rich tubulin rings was determined by cryo-transmission electron microscopy and synchrotron solution X-ray scattering. The scattering curves were fitted to atomic models, using our state-of-the-art analysis software, D+ . We found that there is a critical concentration for ring formation, which increased with GTP concentration with temperature. MT assembly or disassembly, induced by changes in temperature, was analyzed by time-resolved small-angle X-ray scattering. During MT assembly, the fraction of rings and unassembled dimers simultaneously decreased. During MT disassembly, the mass fraction of dimers increased. The increase in the concentration of rings was delayed until the fraction of dimers was sufficiently high. We verified that pure dimers, eluted via size-exclusion chromatography, could also form rings. Interestingly, X-ray radiation triggered tubulin ring disassembly. The concentration of disassembled rings versus exposure time followed a first-order kinetics. The disassembly rate constant and initial concentration were determined. X-ray radiation-triggered disassembly was used to determine the concentration of rings. We confirmed that following a temperature jump, the mass fraction of rings decreased and then stabilized at a constant value during the first stage of the MT assembly kinetics. This study sheds light on the most basic assembly and disassembly conditions for in vitro single GDP-rich tubulin rings and their relation to MT kinetics.


Assuntos
Encéfalo/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Animais , Cinética , Modelos Teóricos , Conformação Proteica , Multimerização Proteica , Suínos , Raios X
16.
Proc Natl Acad Sci U S A ; 112(47): E6416-25, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26542680

RESUMO

Microtubules (MTs) are hollow cytoskeletal filaments assembled from αß-tubulin heterodimers. Tau, an unstructured protein found in neuronal axons, binds to MTs and regulates their dynamics. Aberrant Tau behavior is associated with neurodegenerative dementias, including Alzheimer's. Here, we report on a direct force measurement between paclitaxel-stabilized MTs coated with distinct Tau isoforms by synchrotron small-angle X-ray scattering (SAXS) of MT-Tau mixtures under osmotic pressure (P). In going from bare MTs to MTs with Tau coverage near the physiological submonolayer regime (Tau/tubulin-dimer molar ratio; ΦTau = 1/10), isoforms with longer N-terminal tails (NTTs) sterically stabilized MTs, preventing bundling up to PB ∼ 10,000-20,000 Pa, an order of magnitude larger than bare MTs. Tau with short NTTs showed little additional effect in suppressing the bundling pressure (PB ∼ 1,000-2,000 Pa) over the same range. Remarkably, the abrupt increase in PB observed for longer isoforms suggests a mushroom to brush transition occurring at 1/13 < ΦTau < 1/10, which corresponds to MT-bound Tau with NTTs that are considerably more extended than SAXS data for Tau in solution indicate. Modeling of Tau-mediated MT-MT interactions supports the hypothesis that longer NTTs transition to a polyelectrolyte brush at higher coverages. Higher pressures resulted in isoform-independent irreversible bundling because the polyampholytic nature of Tau leads to short-range attractions. These findings suggest an isoform-dependent biological role for regulation by Tau, with longer isoforms conferring MT steric stabilization against aggregation either with other biomacromolecules or into tight bundles, preventing loss of function in the crowded axon environment.


Assuntos
Fenômenos Biofísicos , Microtúbulos/metabolismo , Proteínas tau/metabolismo , Animais , Bovinos , Humanos , Modelos Moleculares , Pressão Osmótica , Ligação Proteica , Isoformas de Proteínas/metabolismo
17.
Angew Chem Int Ed Engl ; 57(29): 8871-8874, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29862609

RESUMO

An amphiphile based on polyethylene glycol (PEG) polymer and two molecular moieties (perylene diimide and C7 fluoroalkyl, PDI and C7 F) attached to its termini assembles into crystalline films with long-range order. The films reversibly switch from crystalline to amorphous above the PEG melting temperature. The adaptive behavior stems from the responsiveness of the PEG domain and the robustness of the PDI and C7 F assemblies. The hydrophobicity of the film can be controlled by heating, resulting in switching from highly hydrophobic to superhydrophilic. The long-range order, reversible crystallinity switching, and the temperature-controlled wettability demonstrate the potential of block copolymer analogues based on simple polymeric/molecular hybrids.

18.
Biophys J ; 112(10): 2184-2195, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28538155

RESUMO

Bacterial mobility is powered by rotation of helical flagellar filaments driven by rotary motors. Flagellin isolated from the Salmonella Typhimurium SJW1660 strain, which differs by a point mutation from the wild-type strain, assembles into straight filaments in which flagellin monomers are arranged in a left-handed helix. Using small-angle x-ray scattering and osmotic stress methods, we investigated the structure of SJW1660 flagellar filaments as well as the intermolecular forces that govern their assembly into dense hexagonal bundles. The scattering data were fitted to models, which took into account the atomic structure of the flagellin subunits. The analysis revealed the exact helical arrangement and the super-helical twist of the flagellin subunits within the filaments. Under osmotic stress, the filaments formed two-dimensional hexagonal bundles. Monte Carlo simulations and continuum theories were used to analyze the scattering data from hexagonal arrays, revealing how the bundle bulk modulus and the deflection length of filaments in the bundles depend on the applied osmotic stress. Scattering data from aligned flagellar bundles confirmed the theoretically predicated structure-factor scattering peak line shape. Quantitative analysis of the measured equation of state of the bundles revealed the contributions of electrostatic, hydration, and elastic interactions to the intermolecular forces associated with bundling of straight semi-flexible flagellar filaments.


Assuntos
Flagelos/metabolismo , Simulação por Computador , Elasticidade , Flagelos/química , Flagelina/metabolismo , Modelos Moleculares , Método de Monte Carlo , Pressão Osmótica , Pressão , Salmonella typhimurium , Espalhamento a Baixo Ângulo , Difração de Raios X
19.
Photosynth Res ; 134(1): 39-49, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28577216

RESUMO

Cyanobacteria light-harvesting complexes can change their structure to cope with fluctuating environmental conditions. Studying in vivo structural changes is difficult owing to complexities imposed by the cellular environment. Mimicking this system in vitro is challenging, as well. The in vivo system is highly concentrated, and handling similar in vitro concentrated samples optically is difficult because of high absorption. In this research, we mapped the cyanobacteria antennas self-assembly pathways using highly concentrated solutions of phycocyanin (PC) that mimic the in vivo condition. PC was isolated from the thermophilic cyanobacterium Thermosynechococcus vulcanus and measured by several methods. PC has three oligomeric states: hexamer, trimer, and monomer. We showed that the oligomeric state was changed upon increase of PC solution concentration. This oligomerization mechanism may enable photosynthetic organisms to adapt their light-harvesting system to a wide range of environmental conditions.


Assuntos
Ficocianina/química , Cianobactérias/metabolismo , Espectrometria de Massas
20.
Langmuir ; 33(23): 5636-5641, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28514855

RESUMO

The interaction between multivalent ions and lipid membranes with saturated tails and dipolar (net neutral) headgroups can lead to adsorption of the ions onto the membrane. The ions charge the membranes and contribute to electrostatic repulsion between them, in a similar manner to membranes containing charged lipids. Using solution X-ray scattering and the osmotic stress method, we measured and modeled the pressure-distance curves between partially charged membranes containing mixtures of charged (1,2-dilauroyl-sn-glycero-3-phospho-l-serine, DLPS) and dipolar (1,2-dilauroyl-sn-glycero-3-phosphocholine, DLPC) lipids over a wide range of membrane charge densities. We then compared these pressure-distance curves with those of DLPC membranes in the presence of 10 mM CaCl2. Our data and modeling show that when low osmotic stress is applied to the DLPC bilayers, the membrane charge density is equivalent to that of a charged membrane containing ca. 4 mol % DLPS and 96 mol % DLPC. As the osmotic stress increased, the charge density of the DLPC membrane decreased and resembled that of a membrane containing ca. 1 mol % DLPS. These data are consistent with desorption of the calcium ions from the DLPC membrane with increasing osmotic stress.


Assuntos
Pressão Osmótica , Cálcio , Cátions , Bicamadas Lipídicas , Lipídeos , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA