Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Dev Growth Differ ; 66(1): 75-88, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925606

RESUMO

Abnormal expression of the transcriptional regulator and hedgehog (Hh) signaling pathway effector Gli3 is known to trigger congenital disease, most frequently affecting the central nervous system (CNS) and the limbs. Accurate delineation of the genomic cis-regulatory landscape controlling Gli3 transcription during embryonic development is critical for the interpretation of noncoding variants associated with congenital defects. Here, we employed a comparative genomic analysis on fish species with a slow rate of molecular evolution to identify seven previously unknown conserved noncoding elements (CNEs) in Gli3 intronic intervals (CNE15-21). Transgenic assays in zebrafish revealed that most of these elements drive activities in Gli3 expressing tissues, predominantly the fins, CNS, and the heart. Intersection of these CNEs with human disease associated SNPs identified CNE15 as a putative mammalian craniofacial enhancer, with conserved activity in vertebrates and potentially affected by mutation associated with human craniofacial morphology. Finally, comparative functional dissection of an appendage-specific CNE conserved in slowly evolving fish (elephant shark), but not in teleost (CNE14/hs1586) indicates co-option of limb specificity from other tissues prior to the divergence of amniotes and lobe-finned fish. These results uncover a novel subset of intronic Gli3 enhancers that arose in the common ancestor of gnathostomes and whose sequence components were likely gradually modified in other species during the process of evolutionary diversification.


Assuntos
Elementos Facilitadores Genéticos , Peixe-Zebra , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Elementos Facilitadores Genéticos/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Animais Geneticamente Modificados , Mamíferos , Evolução Molecular , Sequência Conservada/genética
2.
Dev Genes Evol ; 231(1-2): 21-32, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33655411

RESUMO

The zinc finger-containing transcription factor Gli3 is a key mediator of Hedgehog (Hh) signaling pathway. In vertebrates, Gli3 has widespread expression pattern during early embryonic development. Along the anteroposterior axes of the central nervous system (CNS), dorsoventral neural pattern elaboration is achieved through Hh mediated spatio-temporal deployment of Gli3 transcripts. Previously, we and others uncovered a set of enhancers that mediate many of the known aspects of Gli3 expression during neurogenesis. However, the potential role of Gli3 associated enhancers in trait evolution has not yet received any significant attention. Here, we investigate the evolutionary patterns of Gli3 associated CNS-specific enhancers that have been reported so far. A subset of these enhancers has undergone an accelerated rate of molecular evolution in the human lineage in comparison to other primates/mammals. These fast-evolving enhancers have acquired human-specific changes in transcription factor binding sites (TFBSs). These human-unique changes within subset of Gli3 associated CNS-specific enhancers were further validated as single nucleotide polymorphisms through 1000 Genome Project Phase 3 data. This work not only infers the molecular evolutionary patterns of Gli3 associated enhancers but also provides clues for putative genetic basis of the population-specificity of gene expression regulation.


Assuntos
Sistema Nervoso Central/metabolismo , Elementos Facilitadores Genéticos , Proteínas do Tecido Nervoso/genética , Seleção Genética , Proteína Gli3 com Dedos de Zinco/genética , Sistema Nervoso Central/crescimento & desenvolvimento , Evolução Molecular , Humanos , Neurogênese
3.
BMC Mol Cell Biol ; 24(1): 13, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991330

RESUMO

BACKGROUND: Human accelerated regions (HARs) are short conserved genomic sequences that have acquired significantly more nucleotide substitutions than expected in the human lineage after divergence from chimpanzees. The fast evolution of HARs may reflect their roles in the origin of human-specific traits. A recent study has reported positively-selected single nucleotide variants (SNVs) within brain-exclusive human accelerated enhancers (BE-HAEs) hs1210 (forebrain), hs563 (hindbrain) and hs304 (midbrain/forebrain). By including data from archaic hominins, these SNVs were shown to be Homo sapiens-specific, residing within transcriptional factors binding sites (TFBSs) for SOX2 (hs1210), RUNX1/3 (hs563), and FOS/JUND (hs304). Although these findings suggest that the predicted modifications in TFBSs may have some role in present-day brain structure, work is required to verify the extent to which these changes translate into functional variation. RESULTS: To start to fill this gap, we investigate the SOX2 SNV, with both forebrain expression and strong signal of positive selection in humans. We demonstrate that the HMG box of SOX2 binds in vitro with Homo sapiens-specific derived A-allele and ancestral T-allele carrying DNA sites in BE-HAE hs1210. Molecular docking and simulation analysis indicated highly favourable binding of HMG box with derived A-allele containing DNA site when compared to site carrying ancestral T-allele. CONCLUSION: These results suggest that adoptive changes in TF affinity within BE-HAE hs1210 and other HAR enhancers in the evolutionary history of Homo sapiens might. have brought about changes in gene expression patterns and have functional consequences on forebrain formation and evolution. METHODS: The present study employ electrophoretic mobility shift assays (EMSA) and molecular docking and molecular dynamics simulations approaches.


Assuntos
Prosencéfalo , Sequências Reguladoras de Ácido Nucleico , Humanos , Simulação de Acoplamento Molecular , DNA , Nucleotídeos
4.
Anticancer Agents Med Chem ; 23(12): 1388-1396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005537

RESUMO

BACKGROUND: Breast cancer is characterized by uncontrolled cell growth in the breast tissue and is a leading cause of death globally. Cytotoxic effects and reduced efficacy of currently used therapeutics insist to look for new chemo-preventive strategies against breast cancer. LKB1 gene has recently been categorized as a tumor suppressor gene where its inactivation can cause sporadic carcinomas in various tissues. Mutations in the highly conserved LKB1 catalytic domain lead to the loss of function and subsequently elevated expression of pluripotency factors in breast cancer. OBJECTIVE: The utilization of drug-likeness filters and molecular simulation has helped evaluate the pharmacological activity and binding abilities of selected drug candidates to the target proteins in many cancer studies. METHODS: The current in silico study provides a pharmacoinformatic approach to decipher the potential of novel honokiol derivatives as therapeutic agents against breast cancer. AutoDock Vina was used for molecular docking of the molecules. A 100 nano second (ns) molecular dynamics simulation of the lowest energy posture of 3'-formylhonokiol- LKB1, resulting from docking studies, was carried out using the AMBER 18. RESULTS: Among the three honokiol derivatives, ligand-protein binding energy of 3' formylhonokiol with LKB1 protein was found to be the highest via molecular docking. Moreover, the stability and compactness inferred for 3'- formylhonokiol with LKB1 are suggestive of 3' formylhonokiol being an effective activator of LKB1 via simulation studies. CONCLUSION: It was further established that 3'- formylhonokiol displays an excellent profile of distribution, metabolism, and absorption, indicating it is an anticipated future drug candidate.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Simulação de Acoplamento Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Compostos de Bifenilo/farmacologia , Simulação de Dinâmica Molecular
5.
Front Genet ; 13: 859508, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35391792

RESUMO

The ongoing pandemic of COVID-19 has elaborated an idiosyncratic pattern of SARS-CoV-2-induced symptoms in the human host. Some populations have succumbed to the SARS-CoV-2 infection in large numbers during this pandemic, whereas others have shown a resilient side by manifesting only milder or no symptoms at all. This observation has relayed the onus of the heterogeneous pattern of SARS-CoV-2-induced critical illness among different populations to the host genetic factors. Here, the evolutionary route was explored and three genetic loci, i.e., rs10735079, rs2109069, and rs2236757, associated with COVID-19 were analyzed. Among the three, the risk allele A at genetic locus rs2236757 residing in the IFNAR2 gene was observed to have undergone recent positive selection in the African population.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36141842

RESUMO

Helicobacter cinaedi is a Gram-negative bacterium from the family Helicobacteraceae and genus Helicobacter. The pathogen is a causative agent of gastroenteritis, cellulitis, and bacteremia. The increasing antibiotic resistance pattern of the pathogen prompts the efforts to develop a vaccine to prevent dissemination of the bacteria and stop the spread of antibiotic resistance (AR) determinants. Herein, a pan-genome analysis of the pathogen strains was performed to shed light on its core genome and its exploration for potential vaccine targets. In total, four vaccine candidates (TonB dependent receptor, flagellar hook protein FlgE, Hcp family type VI secretion system effector, flagellar motor protein MotB) were identified as promising vaccine candidates and subsequently subjected to an epitopes' mapping phase. These vaccine candidates are part of the pathogen core genome: they are essential, localized at the pathogen surface, and are antigenic. Immunoinformatics was further applied on the selected vaccine proteins to predict potential antigenic, non-allergic, non-toxic, virulent, and DRB*0101 epitopes. The selected epitopes were then fused using linkers to structure a multi-epitopes' vaccine construct. Molecular docking simulations were conducted to determine a designed vaccine binding stability with TLR5 innate immune receptor. Further, binding free energy by MMGB/PBSA and WaterSwap was employed to examine atomic level interaction energies. The designed vaccine also stimulated strong humoral and cellular immune responses as well as interferon and cytokines' production. In a nutshell, the designed vaccine is promising in terms of immune responses' stimulation and could be an ideal candidate for experimental analysis due to favorable physicochemical properties.


Assuntos
Helicobacter , Sistemas de Secreção Tipo VI , Vacinas , Biologia Computacional , Citocinas , Epitopos de Linfócito B/química , Epitopos de Linfócito T/química , Helicobacter/genética , Interferons , Simulação de Acoplamento Molecular , Receptor 5 Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA