Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 166(2): 343-357, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27374334

RESUMO

Cells benefit from silencing foreign genetic elements but must simultaneously avoid inactivating endogenous genes. Although chromatin modifications and RNAs contribute to maintenance of silenced states, the establishment of silenced regions will inevitably reflect underlying DNA sequence and/or structure. Here, we demonstrate that a pervasive non-coding DNA feature in Caenorhabditis elegans, characterized by 10-base pair periodic An/Tn-clusters (PATCs), can license transgenes for germline expression within repressive chromatin domains. Transgenes containing natural or synthetic PATCs are resistant to position effect variegation and stochastic silencing in the germline. Among endogenous genes, intron length and PATC-character undergo dramatic changes as orthologs move from active to repressive chromatin over evolutionary time, indicating a dynamic character to the An/Tn periodicity. We propose that PATCs form the basis of a cellular immune system, identifying certain endogenous genes in heterochromatic contexts as privileged while foreign DNA can be suppressed with no requirement for a cellular memory of prior exposure.


Assuntos
Caenorhabditis elegans/metabolismo , DNA Intergênico/metabolismo , Inativação Gênica , Animais , Composição de Bases , Caenorhabditis elegans/genética , Cromatina , Elementos de DNA Transponíveis , DNA Viral/genética , Células Germinativas/metabolismo , Íntrons , Regiões Promotoras Genéticas , RNA Antissenso/metabolismo , RNA Mensageiro/metabolismo , Transgenes
2.
Biochem Soc Symp ; (73): 85-96, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16626290

RESUMO

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


Assuntos
Ativação Transcricional , Sítios de Ligação/genética , Proteínas de Ligação a DNA , Células Eucarióticas , Genes Fúngicos , Modelos Genéticos , Prolina/metabolismo , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Transativadores/química , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Genetics ; 170(1): 61-70, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15744050

RESUMO

Because some metabolic intermediates are involved in more than one pathway, crosstalk between pathways is crucial to maintaining homeostasis. AMP and histidine biosynthesis pathways are coregulated at the transcriptional level in response to adenine availability. 5'-Phosphoribosyl-4-carboxamide-5-aminoimidazole (AICAR), a metabolic intermediate at the crossroads between these two pathways, is shown here to be critical for activation of the transcriptional response in the absence of adenine. In this study, we show that both AMP and histidine pathways significantly contribute to AICAR synthesis. Furthermore, we show that upregulation of the histidine pathway clearly interferes with regulation of the AMP pathway, thus providing an explanation for the regulatory crosstalk between these pathways. Finally, we revisit the histidine auxotrophy of ade3 or ade16 ade17 mutants. Interestingly, overexpression of PMU1, encoding a potential phosphomutase, partially suppresses the histidine requirement of an ade3 ade16 ade17 triple mutant, most probably by reducing the level of AICAR in this mutant. Together our data clearly establish that AICAR is not just a metabolic intermediate but also acts as a true regulatory molecule.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Histidina/metabolismo , Purinas/metabolismo , Ribonucleotídeos/fisiologia , Saccharomyces cerevisiae/metabolismo , Monofosfato de Adenosina/biossíntese , Aminoimidazol Carboxamida/toxicidade , Ácido Fólico/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Inosina Monofosfato/metabolismo , Ribonucleotídeos/toxicidade , Saccharomyces cerevisiae/genética
4.
Nat Commun ; 5: 4595, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25183497

RESUMO

Cellular differentiation is frequently accompanied by alternative splicing, enabled by the expression of tissue-specific factors which bind to pre-mRNAs and regulate exon choice. During Caenorhabditis elegans development, muscle-specific expression of the splicing factor SUP-12, together with a member of the Fox-1 family of splicing proteins, generates a functionally distinct isoform of the fibroblast growth factor receptor EGL-15. Using a combination of NMR spectroscopy and isothermal titration calorimetry, we determined the mode of nucleic acid binding by the RNA recognition motif domain of SUP-12. The calculated structures provide the first atomic details of RNA and DNA binding by the family of proteins that include SUP-12, RBM24, RBM38/RNPC1, SEB-4 and XSeb4R. This information was further used to design strategic mutations to probe the interaction with ASD-1 and to quantitatively perturb splicing in vivo.


Assuntos
Processamento Alternativo , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Ligação a RNA/química , RNA/química , Receptores de Fatores de Crescimento de Fibroblastos/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Calorimetria , Diferenciação Celular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes
5.
PLoS One ; 4(3): e4539, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19262694

RESUMO

The relationship between amyloid and toxic species is a central problem since the discovery of amyloid structures in different diseases. Despite intensive efforts in the field, the deleterious species remains unknown at the molecular level. This may reflect the lack of any structure-toxicity study based on a genetic approach. Here we show that a structure-toxicity study without any biochemical prerequisite can be successfully achieved in yeast. A PCR mutagenesis of the amyloid domain of HET-s leads to the identification of a mutant that might impair cellular viability. Cellular and biochemical analyses demonstrate that this toxic mutant forms GFP-amyloid aggregates that differ from the wild-type aggregates in their shape, size and molecular organization. The chaperone Hsp104 that helps to disassemble protein aggregates is strictly required for the cellular toxicity. Our structure-toxicity study suggests that the smallest aggregates are the most toxic, and opens a new way to analyze the relationship between structure and toxicity of amyloid species.


Assuntos
Amiloide/toxicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Leveduras/química , Proteínas de Fluorescência Verde , Proteínas de Choque Térmico/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA