Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 326(4): E493-E502, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381399

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation that can progress to inflammation (nonalcoholic steatohepatitis, NASH), and fibrosis. Serum ß-hydroxybutyrate (ß-HB), a product of the ketogenic pathway, is commonly used as a surrogate marker for hepatic fatty acid oxidation (FAO). However, it remains uncertain whether this relationship holds true in the context of NAFLD in humans. We compared fasting serum ß-HB levels with direct measurement of liver mitochondrial palmitate oxidation in humans stratified based on NAFLD severity (n = 142). Patients were stratified based on NAFLD activity score (NAS): NAS = 0 (no disease), NAS = 1-2 (mild), NAS = 3-4 (moderate), and NAS ≥ 5 (advanced). Moderate and advanced NAFLD is associated with reductions in liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), serum ß-HB, but not 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL) mRNA, relative to no disease. Worsening liver mitochondrial complete palmitate oxidation corresponded with lower HMGCS2 mRNA but not total (complete + incomplete) palmitate oxidation. Interestingly, we found that liver HMGCS2 mRNA and serum ß-HB correlated with liver mitochondrial ß-hydroxyacyl-CoA dehydrogenase (ß-HAD) activity and CPT1A mRNA. Also, lower mitochondrial mass and markers of mitochondrial turnover positively correlated with lower HMGCS2 in the liver. These data suggest that liver ketogenesis and FAO occur at comparable rates in individuals with NAFLD. Our findings support the utility of serum ß-HB to serve as a marker of liver injury and hepatic FAO in the context of NAFLD.NEW & NOTEWORTHY Serum ß-hydroxybutyrate (ß-HB) is frequently utilized as a surrogate marker for hepatic fatty acid oxidation; however, few studies have investigated this relationship during states of liver disease. We found that the progression of nonalcoholic fatty liver disease (NAFLD) is associated with reductions in circulating ß-HB and liver 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2). As well, decreased rates of hepatic fatty acid oxidation correlated with liver HMGCS2 mRNA and serum ß-HB. Our work supports serum ß-HB as a potential marker for hepatic fatty acid oxidation and liver injury during NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Corpos Cetônicos/metabolismo , Biomarcadores/metabolismo , RNA Mensageiro/metabolismo , Palmitatos/metabolismo
2.
J Hepatol ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914313

RESUMO

BACKGROUND & AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) is one of the most common liver diseases worldwide and is characterized by multi-tissue insulin resistance. The effects of a 10-month energy restriction and exercise intervention on liver histology, anthropometrics, plasma biochemistries, and insulin sensitivity were compared to standard of care (control) to understand mechanisms that support liver health improvements. METHODS: Following medical diagnosis of MASH, individuals were randomized to treatment (n = 16) or control (n = 8). Liver fat (magnetic resonance spectroscopy), 18-hour plasma biochemical measurements, and isotopically labeled hyperinsulinemic-euglycemic clamps were completed pre- and post-intervention. Body composition and cardiorespiratory fitness (VO2peak) were also measured mid-intervention. Those in the treatment group were counseled to reduce energy intake and completed supervised, high-intensity interval training (3x/week) for 10 months. Controls continued physician-directed care. RESULTS: Treatment induced significant (p <0.05) reductions in body weight, fat mass, and liver injury, while VO2peak (p <0.05) and non-esterified fatty acid suppression (p = 0.06) were improved. Both groups exhibited reductions in total energy intake, hemoglobin A1c, hepatic insulin resistance, and liver fat (p <0.05). Compared to control, treatment induced a two-fold increase in peripheral insulin sensitivity which was significantly related to higher VO2peak and resolution of liver disease. CONCLUSIONS: Exercise and energy restriction elicited significant and clinically meaningful treatment effects on liver health, potentially driven by a redistribution of excess nutrients to skeletal muscle, thereby reducing hepatic nutrient toxicity. Clinical guidelines should emphasize the addition of aerobic exercise in lifestyle treatments for the greatest histologic benefit in individuals with advanced MASH. IMPACT AND IMPLICATIONS: The mechanisms that underpin histologic improvement in individuals with metabolic dysfunction-associated steatohepatitis (MASH) are not well understood. This study evaluated the relationship between liver and metabolic health, testing how changes in one may affect the other. We investigated the effects of energy restriction and exercise on the association between multi-tissue insulin sensitivity and histologic improvements in participants with biopsy-proven MASH. For the first time, these results show that an improvement in peripheral (but not hepatic) insulin sensitivity and systemic markers of muscle function (i.e. cardiorespiratory fitness) were strongly related to resolution of liver disease. Extrahepatic disposal of substrates and improved fitness levels supported histologic improvement, confirming the addition of exercise as crucial to lifestyle interventions in MASH. CLINICAL TRIAL NUMBER: NCT03151798.

3.
Semin Liver Dis ; 43(1): 77-88, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36764305

RESUMO

The association between liver and brain health has gained attention as biomarkers of liver function have been revealed to predict neurodegeneration. The liver is a central regulator in metabolic homeostasis. However, in nonalcoholic fatty liver disease (NAFLD), homeostasis is disrupted which can result in extrahepatic organ pathologies. Emerging literature provides insight into the mechanisms behind the liver-brain health axis. These include the increased production of liver-derived factors that promote insulin resistance and loss of neuroprotective factors under conditions of NAFLD that increase insulin resistance in the central nervous system. In addition, elevated proinflammatory cytokines linked to NAFLD negatively impact the blood-brain barrier and increase neuroinflammation. Furthermore, exacerbated dyslipidemia associated with NAFLD and hepatic dysfunction can promote altered brain bioenergetics and oxidative stress. In this review, we summarize the current knowledge of the crosstalk between liver and brain as it relates to the pathophysiology between NAFLD and neurodegeneration, with an emphasis on Alzheimer's disease. We also highlight knowledge gaps and future areas for investigation to strengthen the potential link between NAFLD and neurodegeneration.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Biomarcadores/metabolismo , Citocinas/metabolismo
4.
J Lipid Res ; 64(5): 100366, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028768

RESUMO

Ceramides (CERs) are key intermediate sphingolipids implicated in contributing to mitochondrial dysfunction and the development of multiple metabolic conditions. Despite the growing evidence of CER role in disease risk, kinetic methods to measure CER turnover are lacking, particularly using in vivo models. The utility of orally administered 13C3, 15N l-serine, dissolved in drinking water, was tested to quantify CER 18:1/16:0 synthesis in 10-week-old male and female C57Bl/6 mice. To generate isotopic labeling curves, animals consumed either a control diet or high-fat diet (HFD; n = 24/diet) for 2 weeks and varied in the duration of the consumption of serine-labeled water (0, 1, 2, 4, 7, or 12 days; n = 4 animals/day/diet). Unlabeled and labeled hepatic and mitochondrial CERs were quantified using liquid chromatography tandem MS. Total hepatic CER content did not differ between the two diet groups, whereas total mitochondrial CERs increased with HFD feeding (60%, P < 0.001). Within hepatic and mitochondrial pools, HFD induced greater saturated CER concentrations (P < 0.05) and significantly elevated absolute turnover of 16:0 mitochondrial CER (mitochondria: 59%, P < 0.001 vs. liver: 15%, P = 0.256). The data suggest cellular redistribution of CERs because of the HFD. These data demonstrate that a 2-week HFD alters the turnover and content of mitochondrial CERs. Given the growing data on CERs contributing to hepatic mitochondrial dysfunction and the progression of multiple metabolic diseases, this method may now be used to investigate how CER turnover is altered in these conditions.


Assuntos
Ceramidas , Esfingolipídeos , Camundongos , Animais , Masculino , Feminino , Ceramidas/metabolismo , Esfingolipídeos/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Dieta Hiperlipídica/efeitos adversos
5.
Hepatology ; 76(5): 1452-1465, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35000203

RESUMO

BACKGROUND AND AIMS: NAFLD and its more-advanced form, steatohepatitis (NASH), is associated with obesity and is an independent risk factor for cardiovascular, liver-related, and all-cause mortality. Available human data examining hepatic mitochondrial fatty acid oxidation (FAO) and hepatic mitochondrial turnover in NAFLD and NASH are scant. APPROACH AND RESULTS: To investigate this relationship, liver biopsies were obtained from patients with obesity undergoing bariatric surgery and data clustered into four groups based on hepatic histopathological classification: Control (CTRL; no disease); NAFL (steatosis only); Borderline-NASH (steatosis with lobular inflammation or hepatocellular ballooning); and Definite-NASH (D-NASH; steatosis, lobular inflammation, and hepatocellular ballooning). Hepatic mitochondrial complete FAO to CO2 and the rate-limiting enzyme in ß-oxidation (ß-hydroxyacyl-CoA dehydrogenase activity) were reduced by ~40%-50% with D-NASH compared with CTRL. This corresponded with increased hepatic mitochondrial reactive oxygen species production, as well as dramatic reductions in markers of mitochondrial biogenesis, autophagy, mitophagy, fission, and fusion in NAFL and NASH. CONCLUSIONS: These findings suggest that compromised hepatic FAO and mitochondrial turnover are intimately linked to increasing NAFLD severity in patients with obesity.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Espécies Reativas de Oxigênio , Dióxido de Carbono , Fígado/patologia , Biomarcadores , Obesidade/patologia , Inflamação/patologia , Renovação Mitocondrial , Ácidos Graxos , Oxirredutases , Coenzima A
6.
J Nutr ; 153(12): 3418-3429, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37774841

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) prevalence is rapidly growing, and fatty liver has been found in a quarter of the US population. Increased liver lipids, particularly those derived from the pathway of de novo lipogenesis (DNL), have been identified as a hallmark feature in individuals with high liver fat. This has led to much activity in basic science and drug development in this area. No studies to date have investigated the contribution of DNL across a spectrum of disease, although it is clear that inhibition of DNL has been shown to reduce liver fat. OBJECTIVES: The purpose of this study was to determine whether liver lipid synthesis increases across the continuum of liver injury. METHODS: Individuals (n = 49) consumed deuterated water for 10 d before their scheduled bariatric surgeries to label DNL; blood and liver tissue samples were obtained on the day of the surgery. Liver lipid concentrations were quantitated, and levels of protein and gene expression assessed. RESULTS: Increased liver DNL, measured isotopically, was significantly associated with liver fatty acid synthase protein content (R = 0.470, P = 0.003), total steatosis assessed by histology (R = 0.526, P = 0.0008), and the fraction of DNL fatty acids in plasma very low-density lipoprotein-triacylglycerol (R = 0.747, P < 0.001). Regression analysis revealed a parabolic relationship between fractional liver DNL (percent) and NAFLD activity score (R = 0.538, P = 0.0004). CONCLUSION: These data demonstrate that higher DNL is associated with early to mid stages of liver disease, and this pathway may be an effective target for the treatment of NAFLD and nonalcoholic steatohepatitis. This study was registered at clinicaltrials.gov as NCT03683589.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/metabolismo , Marcação por Isótopo , Fígado/metabolismo , Ácidos Graxos/metabolismo , Lipogênese
7.
Physiol Genomics ; 54(7): 261-272, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35648460

RESUMO

Limited reports exist regarding adeno-associated virus (AAV) biodistribution in swine. This study assessed biodistribution following antegrade intracoronary and intravenous delivery of two self-complementary serotype 9 AAV (AAV9sc) biologics designed to target signaling in the cardiomyocyte considered important for the development of heart failure. Under the control of a cardiomyocyte-specific promoter, AAV9sc.shmAKAP and AAV9sc.RBD express a small hairpin RNA for the perinuclear scaffold protein muscle A-kinase anchoring protein ß (mAKAPß) and an anchoring disruptor peptide for p90 ribosomal S6 kinase type 3 (RSK3), respectively. Quantitative PCR was used to assess viral genome (vg) delivery and transcript expression in Ossabaw and Yorkshire swine tissues. Myocardial viral delivery was 2-5 × 105 vg/µg genomic DNA (gDNA) for both infusion techniques at a dose ∼1013 vg/kg body wt, demonstrating delivery of ∼1-3 viral particles per cardiac diploid genome. Myocardial RNA levels for each expressed transgene were generally proportional to dose and genomic delivery, and comparable with levels for moderately expressed endogenous genes. Despite significant AAV9sc delivery to other tissues, including the liver, neither biologic induced toxic effects as assessed using functional, structural, and circulating cardiac and systemic markers. These results indicate successful targeted delivery of cardiomyocyte-selective viral vectors in swine without negative side effects, an important step in establishing efficacy in a preclinical experimental setting.


Assuntos
Dependovirus , Miócitos Cardíacos , Animais , Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Infusões Intravenosas , Miócitos Cardíacos/metabolismo , Sorogrupo , Suínos , Distribuição Tecidual
8.
Am J Physiol Heart Circ Physiol ; 323(5): H879-H891, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36083795

RESUMO

Adropin is a peptide largely secreted by the liver and known to regulate energy homeostasis; however, it also exerts cardiovascular effects. Herein, we tested the hypothesis that low circulating levels of adropin in obesity and type 2 diabetes (T2D) contribute to arterial stiffening. In support of this hypothesis, we report that obesity and T2D are associated with reduced levels of adropin (in liver and plasma) and increased arterial stiffness in mice and humans. Establishing causation, we show that mesenteric arteries from adropin knockout mice are also stiffer, relative to arteries from wild-type counterparts, thus recapitulating the stiffening phenotype observed in T2D db/db mice. Given the above, we performed a set of follow-up experiments, in which we found that 1) exposure of endothelial cells or isolated mesenteric arteries from db/db mice to adropin reduces filamentous actin (F-actin) stress fibers and stiffness, 2) adropin-induced reduction of F-actin and stiffness in endothelial cells and db/db mesenteric arteries is abrogated by inhibition of nitric oxide (NO) synthase, and 3) stimulation of smooth muscle cells or db/db mesenteric arteries with a NO mimetic reduces stiffness. Lastly, we demonstrated that in vivo treatment of db/db mice with adropin for 4 wk reduces stiffness in mesenteric arteries. Collectively, these findings indicate that adropin can regulate arterial stiffness, likely via endothelium-derived NO, and thus support the notion that "hypoadropinemia" should be considered as a putative target for the prevention and treatment of arterial stiffening in obesity and T2D.NEW & NOTEWORTHY Arterial stiffening, a characteristic feature of obesity and type 2 diabetes (T2D), contributes to the development and progression of cardiovascular diseases. Herein we establish that adropin is decreased in obese and T2D models and furthermore provide evidence that reduced adropin may directly contribute to arterial stiffening. Collectively, findings from this work support the notion that "hypoadropinemia" should be considered as a putative target for the prevention and treatment of arterial stiffening in obesity and T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Rigidez Vascular , Actinas , Animais , Células Endoteliais , Humanos , Artérias Mesentéricas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico , Óxido Nítrico Sintase , Obesidade/complicações , Peptídeos/farmacologia , Rigidez Vascular/fisiologia
9.
Mol Genet Metab ; 136(4): 315-323, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35725939

RESUMO

Osteogenesis imperfecta (OI) is rare heritable connective tissue disorder that most often arises from mutations in the type I collagen genes, COL1A1 and COL1A2, displaying a range of symptoms including skeletal fragility, short stature, blue-gray sclera, and muscle weakness. Recent investigations into the intrinsic muscle weakness have demonstrated reduced contractile generating force in some murine models consistent with patient population studies, as well as alterations in whole body bioenergetics. Muscle weakness is found in approximately 80% of patients and has been equivocal in OI mouse models. Understanding the mechanism responsible for OI muscle weakness is crucial in building our knowledge of muscle bone cross-talk via mechanotransduction and biochemical signaling, and for potential novel therapeutic approaches. In this study we evaluated skeletal muscle mitochondrial function and whole-body bioenergetics in the heterozygous +/G610C (Amish) mouse modeling mild/moderate human type I/VI OI and minimal skeletal muscle weakness. Our analyses revealed several changes in the +/G610C mouse relative to their wildtype littermates including reduced state 3 mitochondrial respiration, increased mitochondrial citrate synthase activity, increased Parkin and p62 protein content, and an increased respiratory quotient. These changes may represent the ability of the +/G610C mouse to compensate for mitochondrial and metabolic changes that may arise due to type I collagen mutations and may also account for the lack of muscle weakness observed in the +/G610C model relative to the more severe OI models.


Assuntos
Osteogênese Imperfeita , Animais , Colágeno Tipo I/genética , Modelos Animais de Doenças , Humanos , Mecanotransdução Celular , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Músculo Esquelético/metabolismo , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo
10.
Physiol Genomics ; 53(3): 99-115, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33491589

RESUMO

Heart failure (HF) patients with deteriorating right ventricular (RV) structure and function have a nearly twofold increased risk of death compared with those without. Despite the well-established clinical risk, few studies have examined the molecular signature associated with this HF condition. The purpose of this study was to integrate morphological, molecular, and functional data with the transcriptome data set in the RV of a preclinical model of cardiometabolic HF. Ossabaw swine were fed either normal diet without surgery (lean control, n = 5) or Western diet and aortic-banding (WD-AB; n = 4). Postmortem RV weight was increased and positively correlated with lung weight in the WD-AB group compared with CON. Total RNA-seq was performed and gene expression profiles were compared and analyzed using principal component analysis, weighted gene co-expression network analysis, module enrichment analysis, and ingenuity pathway analysis. Gene networks specifically associated with RV hypertrophic remodeling identified a hub gene in MAPK8 (or JNK1) that was associated with the selective induction of the extracellular matrix (ECM) component fibronectin. JNK1 and fibronectin protein were increased in the right coronary artery (RCA) of WD-AB animals and associated with a decrease in matrix metalloproteinase 14 protein, which specifically degrades fibronectin. RCA fibronectin content was correlated with increased vascular stiffness evident as a decreased elastin elastic modulus in WD-AB animals. In conclusion, this study establishes a molecular and transcriptome signature in the RV using Ossabaw swine with cardiometabolic HF. This signature was associated with altered ECM regulation and increased vascular stiffness in the RCA, with selective dysregulation of fibronectin.


Assuntos
Vasos Coronários/metabolismo , Perfilação da Expressão Gênica/métodos , Insuficiência Cardíaca/genética , Miocárdio/metabolismo , Transcriptoma , Remodelação Ventricular/genética , Animais , Dieta Ocidental , Feminino , Ontologia Genética , Redes Reguladoras de Genes , Insuficiência Cardíaca/metabolismo , Ventrículos do Coração/metabolismo , Humanos , RNA-Seq/métodos , Transdução de Sinais/genética , Suínos
11.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G564-G572, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33501889

RESUMO

Nutritional ketosis as a therapeutic tool has been extended to the treatment of metabolic diseases, including obesity, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD). The purpose of this study was to determine whether dietary administration of the ketone ester (KE) R,S-1,3-butanediol diacetoacetate (BD-AcAc2) attenuates markers of hepatic stellate cell (HSC) activation and hepatic fibrosis in the context of high-fat diet (HFD)-induced obesity. Six-week-old male C57BL/6J mice were placed on a 10-wk ad libitum HFD (45% fat, 32% carbohydrates, 23% proteins). Mice were then randomized to one of three groups (n = 10 per group) for an additional 12 wk: 1) control (CON), continuous HFD; 2) pair-fed (PF) to KE, and 3) KE (HFD + 30% energy from BD-AcAc2, KE). KE feeding significantly reduced histological steatosis, inflammation, and total NAFLD activity score versus CON, beyond improvements observed for calorie restriction alone (PF). Dietary KE supplementation also reduced the protein content and gene expression of profibrotic markers (α-SMA, COL1A1, PDGF-ß, MMP9) versus CON (P < 0.05), beyond reductions observed for PF versus CON. Furthermore, KE feeding increased hepatic markers of anti-inflammatory M2 macrophages (CD163) and also reduced proinflammatory markers [tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and cellular communication network factor 1 (CCN1)] versus CON and PF (P ≤ 0.05), in the absence of changes in markers of total hepatic macrophage content (F4/80 and CD68; P > 0.05). These data highlight that the dietary ketone ester BD-AcAc2 ameliorates histological NAFLD and inflammation and reduces profibrotic and proinflammatory markers. Future studies to further explore potential mechanisms are warranted.NEW & NOTEWORTHY To our knowledge, this is the first study focusing on hepatic outcomes in response to dietary ketone ester feeding in male mice with HFD-induced NAFLD. Novel findings include that dietary ketone ester feeding ameliorates NAFLD outcomes via reductions in histological steatosis and inflammation. These improvements were beyond those observed for caloric restriction alone. Furthermore, dietary ketone ester feeding was associated with greater reductions in markers of hepatic fibrogenesis and inflammation compared with control and calorie-restricted mice.


Assuntos
Acetoacetatos/farmacologia , Butileno Glicóis/farmacologia , Dieta Hiperlipídica , Cirrose Hepática Experimental/prevenção & controle , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Biomarcadores/metabolismo , Restrição Calórica , Regulação da Expressão Gênica , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Mediadores da Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/genética , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/patologia , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fenótipo
12.
Mol Genet Metab ; 132(4): 244-253, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33674196

RESUMO

Osteogenesis imperfecta (OI) is a heritable connective tissue disorder with patients exhibiting bone fragility and muscle weakness. The synergistic biochemical and biomechanical relationship between bone and muscle is a critical potential therapeutic target, such that muscle weakness should not be ignored. Previous studies demonstrated mitochondrial dysfunction in the skeletal muscle of oim/oim mice, which model a severe human type III OI. Here, we further characterize this mitochondrial dysfunction and evaluate several parameters of whole body and skeletal muscle metabolism. We demonstrate reduced mitochondrial respiration in female gastrocnemius muscle, but not in liver or heart mitochondria, suggesting that mitochondrial dysfunction is not global in the oim/oim mouse. Myosin heavy chain fiber type distributions were altered in the oim/oim soleus muscle with a decrease (-33 to 50%) in type I myofibers and an increase (+31%) in type IIa myofibers relative to their wildtype (WT) littermates. Additionally, altered body composition and increased energy expenditure were observed oim/oim mice relative to WT littermates. These results suggest that skeletal muscle mitochondrial dysfunction is linked to whole body metabolic alterations and to skeletal muscle weakness in the oim/oim mouse.


Assuntos
Metabolismo Energético/genética , Mitocôndrias Cardíacas/genética , Músculo Esquelético/metabolismo , Osteogênese Imperfeita/genética , Animais , Modelos Animais de Doenças , Fêmur/metabolismo , Fêmur/patologia , Humanos , Camundongos , Mitocôndrias Cardíacas/fisiologia , Músculo Esquelético/patologia , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/patologia , Índice de Gravidade de Doença
13.
Am J Physiol Heart Circ Physiol ; 319(5): H1036-H1043, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32946285

RESUMO

The small heat shock protein 20 (HSPB6) emerges as a potential upstream mediator of autophagy. Although autophagy is linked to several clinical disorders, how HSPB6 and autophagy are regulated in the setting of heart failure (HF) remains unknown. The goal of this study was to assess the activation of the HSPB6 and its association with other well-established autophagy markers in central and peripheral tissues from a preclinical Ossabaw swine model of cardiometabolic HF induced by Western diet and chronic cardiac pressure overload. We hypothesized HSPB6 would be activated in central and peripheral tissues, stimulating autophagy. We found that autophagy in the heart is interrupted at various stages of the process in a chamber-specific manner. Protein levels of HSPB6, Beclin 1, and p62 are increased in the right ventricle, whereas only HSPB6 was increased in the left ventricle. Unlike the heart, samples from the triceps brachii long head showed only an increase in the protein level of p62, highlighting interesting central versus peripheral differences in autophagy regulation. In the right coronary artery, total HSPB6 protein expression was decreased and associated with an increase in LC3B-II/LC3B-I ratio, demonstrating a different mechanism of autophagy dysregulation in the coronary vasculature. Thus, contrary to our hypothesis, activation of HSPB6 was differentially regulated in a tissue-specific manner and observed in parallel with variable states of autophagy markers assessed by protein levels of LC3B, p62, and Beclin 1. Our data provide insight into how the HSPB6/autophagy axis is regulated in a preclinical swine model with potential relevance to heart failure with preserved ejection fraction.NEW & NOTEWORTHY Our study shows that the activation of HSPB6 is tissue specific and associated with variable states of downstream markers of autophagy in a unique preclinical swine model of cardiometabolic HF with potential relevance to HFpEF. These findings suggest that targeted approaches could be an important consideration regarding the development of drugs aimed at this intracellular recycling process.


Assuntos
Autofagia , Proteínas de Choque Térmico HSP20/metabolismo , Insuficiência Cardíaca/metabolismo , Síndrome Metabólica/metabolismo , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Vasos Coronários/metabolismo , Feminino , Proteínas de Choque Térmico HSP20/genética , Insuficiência Cardíaca/etiologia , Síndrome Metabólica/complicações , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Suínos
14.
J Lipid Res ; 60(7): 1236-1249, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31085628

RESUMO

The relationship between liver interleukin-6 (IL-6) resistance following high-fat diet (HFD)-induced obesity and glucose intolerance is unclear. The purpose of this study was to assess the temporal development of hepatic IL-6 resistance and the role of endoplasmic reticulum (ER) stress in this process. We hypothesized that HFD would rapidly induce hepatic IL-6 resistance through a mechanism involving ER stress. Male C57BL/6N mice consumed chow or a HFD (60%) derived from lard (saturated) or olive oil (monounsaturated) for 4 days or 7 weeks before being injected intraperitoneally with IL-6 (6 ng·kg-1). Glucose, insulin, and pyruvate tolerance tests were used as proxies for systemic glucose metabolism and hepatic glucose production, respectively. Primary mouse hepatocytes were incubated with palmitate (saturated) and oleate (unsaturated) overnight, then treated with 20 ng/ml IL-6. ER stress was induced via tunicamycin or prevented by sodium phenylbutyrate (PBA). Seven weeks of a saturated, but not monounsaturated, HFD reduced hepatic IL-6 signaling in conjunction with hepatic ER stress. Palmitate directly impaired IL-6 signaling in hepatocytes along with inducing ER stress. Pharmacologically induced ER stress caused hepatic IL-6 resistance, whereas PBA reversed HFD-induced IL-6 resistance. Chronic HFD-induced obesity is associated with hepatic IL-6 resistance due to saturated FA-induced ER stress.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Interleucina-6/farmacologia , Fígado/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Animais , Gorduras na Dieta/efeitos adversos , Estresse do Retículo Endoplasmático , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenilbutiratos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tunicamicina/farmacologia
15.
Am J Physiol Endocrinol Metab ; 317(4): E605-E616, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31361543

RESUMO

Dysregulated mitochondrial quality control leads to mitochondrial functional impairments that are central to the development and progression of hepatic steatosis to nonalcoholic steatohepatitis (NASH). Here, we identify hepatocellular localized endothelial nitric oxide synthase (eNOS) as a novel master regulator of mitochondrial quality control. Mice lacking eNOS were more susceptible to Western diet-induced hepatic inflammation and fibrosis in conjunction with decreased markers of mitochondrial biogenesis and turnover. The hepatocyte-specific influence was verified via magnetic activated cell sorting purified primary hepatocytes and in vitro siRNA-induced knockdown of eNOS. Hepatic mitochondria from eNOS knockout mice revealed decreased markers of mitochondrial biogenesis (PPARγ coactivator-1α, mitochondrial transcription factor A) and autophagy/mitophagy [BCL-2-interacting protein-3 (BNIP3), 1A/1B light chain 3B (LC3)], suggesting decreased mitochondrial turnover rate. eNOS knockout in primary hepatocytes exhibited reduced fatty acid oxidation capacity and were unable to mount a normal BNIP3 response to a mitophagic challenge compared with wild-type mice. Finally, we demonstrate that eNOS is required in primary hepatocytes to induce activation of the stress-responsive transcription factor nuclear factor erythroid 2-related factor 2 (NRF2). Thus, our data demonstrate that eNOS is an important regulator of hepatic mitochondrial content and function and NASH susceptibility.


Assuntos
Dieta Ocidental/efeitos adversos , Mitocôndrias Hepáticas/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Autofagia/genética , Técnicas de Silenciamento de Genes , Hepatócitos/patologia , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/genética , Mitofagia , Fator 2 Relacionado a NF-E2/biossíntese , Fator 2 Relacionado a NF-E2/genética , Cultura Primária de Células , RNA Interferente Pequeno/farmacologia
16.
Am J Physiol Endocrinol Metab ; 316(2): E156-E167, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30512987

RESUMO

The role of estrogen receptor-α (ERα) signaling in immunometabolic function is established in females. However, its necessity in males, while appreciated, requires further study. Accordingly, we first determined whether lower metabolic function in male mice compared with females is related to reduced ERα expression. ERα protein expression in metabolically active tissues was lower in males than in females, and this lower expression was associated with worse glucose tolerance. Second, we determined whether ERα is required for optimal immunometabolic function in male mice consuming a chow diet. Despite lower expression of ERα in males, its genetic ablation (KO) caused an insulin-resistant phenotype characterized by enhanced adiposity, glucose intolerance, hepatic steatosis, and metaflammation in adipose tissue and liver. Last, we determined whether ERα is essential for exercise-induced metabolic adaptations. Twelve-week-old wild-type (WT) and ERα KO mice either remained sedentary (SED) or were given access to running wheels (WR) for 10 wk while fed an obesogenic diet. Body weight and fat mass were lower in WR mice regardless of genotype. Daily exercise obliterated immune cell infiltration and inflammatory gene transcripts in adipose tissue in both genotypes. In the liver, however, wheel running suppressed hepatic steatosis and inflammatory gene transcripts in WT but not in KO mice. In conclusion, the present findings indicate that ERα is required for optimal immunometabolic function in male mice despite their reduced ERα protein expression in metabolically active tissues. Furthermore, for the first time, we show that ERα signaling appears to be obligatory for exercise-induced prevention of hepatic steatosis.


Assuntos
Receptor alfa de Estrogênio/genética , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Condicionamento Físico Animal/fisiologia , Tecido Adiposo Branco/metabolismo , Adiposidade/genética , Animais , Receptor alfa de Estrogênio/metabolismo , Feminino , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Inflamação/genética , Inflamação/metabolismo , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo
17.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G166-G178, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30383412

RESUMO

Obesity can lead to impairments in hepatic glucose and insulin homeostasis, and although exercise is an effective treatment, the molecular targets remain incompletely understood. As IL-6 is an exercise-inducible cytokine, we aimed to identify whether IL-6 itself influences hepatic glucose and insulin homeostasis and whether this response differs during obesity. In vivo, male mice were fed a low-fat diet (LFD; 10% kcal) or a high-fat diet (HFD; 60% kcal) for 7 wk, which induced obesity and hepatic lipid accumulation. LFD- and HFD-fed mice were injected with IL-6 (400 ng, 75 min) or PBS and then with insulin (1 U/kg; ~15 min) or saline, at which point livers were collected. In both LFD- and HFD-fed mice, IL-6 decreased blood glucose and mRNA expression of gluconeogenic genes alongside increased phosphorylation of AKT in comparison to PBS controls, and this occurred without changes in circulating insulin. To determine whether this effect of IL-6 was directly on the liver, we completed in vitro isolated primary hepatocyte experiments from chow-fed mice and cultured with or without exposure to free fatty acid (250 µm palmitate and 250 µm oleate, 24 h) to induce lipid accumulation. In both control and free fatty acid-treated hepatocytes, IL-6 (20 ng/ml, 75 min) slightly attenuated insulin-stimulated (10 nM; ~15 min) AKT phosphorylation. Together, these data suggest that IL-6 may lead to improvements in indices of hepatic glucose and insulin homeostasis in vivo; however, this is likely due to an indirect effect on the hepatocyte. NEW & NOTEWORTHY In this study, we used lean and obese mice and found that a single injection of IL-6 improved glucose tolerance, decreased hepatic gluconeogenic gene expression, and increased hepatic phosphorylation of AKT. In primary hepatocytes cultured under control and lipid-laden conditions, IL-6 had a mild, but deleterious, effect on phosphorylation of AKT. Our results show that the beneficial effects of IL-6 on glucose and insulin homeostasis, in vivo, are maintained in obesity.


Assuntos
Glucose/metabolismo , Homeostase/efeitos dos fármacos , Insulina/metabolismo , Interleucina-6/farmacocinética , Animais , Dieta Hiperlipídica , Teste de Tolerância a Glucose , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Resistência à Insulina/fisiologia , Interleucina-6/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/metabolismo
18.
Physiol Genomics ; 50(5): 355-368, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29521600

RESUMO

The gut microbiome plays a critical role in the onset and progression of obesity and the metabolic syndrome. However, it is not well documented whether the cecal vs. the fecal microbiome is more relevant when assessing their contributions to these diseases. Here, we amplified the V4 region of the 16S rRNA gene from cecal and fecal samples of female Ossabaw swine fed a low-fat control diet (10.5% fat, n = 4) or Western diet (43.0% fat, 17.8% high fructose corn syrup, 2% cholesterol; n = 3) for 36 wk. Obesity significantly lowered alpha-diversity ( P < 0.05), and there was clear separation in beta-diversity between lean and obese pigs, as well as between cecal and fecal samples ( P < 0.05). Obesity dramatically increased ( P < 0.05) the Firmicutes:Bacteroidetes ratio in fecal samples, and Actinobacteria was higher ( P < 0.05) in fecal vs. cecal samples in obese pigs. Cyanobacteria, Proteobacteria, and Fusobacteria were increased ( P < 0.05), while Spirochaetes, Tenericutes, and Verrucomicrobia were decreased ( P < 0.05) in obese vs. lean pigs. Prevotellaceae was reduced ( P < 0.05) in obese fecal vs. cecal samples. Moreover, cecal samples in obese had greater ( P < 0.05) predicted metabolic capacity for glycan biosynthesis and metabolism and LPS biosynthesis compared with fecal. Obese pigs also had greater ( P < 0.05) capacity for carbohydrate metabolism, which was driven by obese fecal rather than cecal samples and was opposite in lean pigs ( P < 0.05). The observed differences in pro-inflammatory microbiota and their metabolic capacity in cecal vs. fecal samples of obese pigs provide new insight into evaluating the microbiome in the pathogenesis of obesity and metabolic disease.


Assuntos
Ceco/microbiologia , Fezes/microbiologia , Microbiota/fisiologia , Obesidade/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Dieta Hiperlipídica/efeitos adversos , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Microbiota/genética , Obesidade/etiologia , Dinâmica Populacional , RNA Ribossômico 16S/genética , Suínos
19.
Am J Physiol Regul Integr Comp Physiol ; 314(2): R252-R264, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141949

RESUMO

Impaired microvascular insulin signaling may develop before overt indices of microvascular endothelial dysfunction and represent an early pathological feature of adolescent obesity. Using a translational porcine model of juvenile obesity, we tested the hypotheses that in the early stages of obesity development, impaired insulin signaling manifests in skeletal muscle (triceps), brain (prefrontal cortex), and corresponding vasculatures, and that depressed insulin-induced vasodilation is reversible with acute inhibition of protein kinase Cß (PKCß). Juvenile Ossabaw miniature swine (3.5 mo of age) were divided into two groups: lean control ( n = 6) and obese ( n = 6). Obesity was induced by feeding the animals a high-fat/high-fructose corn syrup/high-cholesterol diet for 10 wk. Juvenile obesity was characterized by excess body mass, hyperglycemia, physical inactivity (accelerometer), and marked lipid accumulation in the skeletal muscle, with no evidence of overt atherosclerotic lesions in athero-prone regions, such as the abdominal aorta. Endothelium-dependent (bradykinin) and -independent (sodium nitroprusside) vasomotor responses in the brachial and carotid arteries (wire myography), as well as in the skeletal muscle resistance and 2A pial arterioles (pressure myography) were unaltered, but insulin-induced microvascular vasodilation was impaired in the obese group. Blunted insulin-stimulated vasodilation, which was reversed with acute PKCß inhibition (LY333-531), occurred alongside decreased tissue perfusion, as well as reduced insulin-stimulated Akt signaling in the prefrontal cortex, but not the triceps. In the early stages of juvenile obesity development, the microvasculature and prefrontal cortex exhibit impaired insulin signaling. Such adaptations may underscore vascular and neurological derangements associated with juvenile obesity.


Assuntos
Resistência à Insulina , Insulina/sangue , Microvasos/metabolismo , Músculo Esquelético/irrigação sanguínea , Obesidade Infantil/metabolismo , Córtex Pré-Frontal/irrigação sanguínea , Vasodilatação , Fatores Etários , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Masculino , Microvasos/efeitos dos fármacos , Microvasos/fisiopatologia , Obesidade Infantil/fisiopatologia , Fosforilação , Proteína Quinase C beta/antagonistas & inibidores , Proteína Quinase C beta/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Suínos , Porco Miniatura , Fatores de Tempo , Vasodilatação/efeitos dos fármacos
20.
Exp Physiol ; 103(3): 408-418, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29215172

RESUMO

NEW FINDINGS: What is the central question of this study? Does a reduction in hepatic peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which has been observed in an insulin-resistant obese state, impair the ability of fibroblast growth factor 21 (FGF21) to modulate metabolism? What is the main finding and its importance? A deficit in hepatic PGC-1α does not compromise the ability of FGF21 to increase hepatic fatty acid oxidation; however, the effects of FGF21 to regulate whole-body metabolism (i.e. total and resting energy expenditure), as well as ambulatory activity, were altered when hepatic PGC-1α was reduced. ABSTRACT: Fibroblast growth factor 21 (FGF21) treatment drives metabolic improvements, including increased metabolic flux and reduced hepatic steatosis, but the mechanisms responsible for these effects remain to be elucidated fully. We tested whether a targeted reduction in hepatic peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), which has been shown to occur with obesity, had a negative impact on the metabolic effects of FGF21. We infused FGF21 (1 mg kg-1  day-1 ) or saline in chow-fed wild-type (WT) and liver-specific PGC-1α heterozygous (LPGC-1α) mice for 4 weeks. Administration of FGF21 lowered serum insulin and cholesterol (P ≤ 0.05) and tended to lower free fatty acids (P = 0.057). The LPGC-1α mice exhibited reduced complete hepatic fatty acid oxidation (FAO; LPGC-1α, 1788 ± 165 nmol g-1  h-1 compared with WT, 2572 ± 437 nmol g-1  h-1 ; P < 0.001), which was normalized by FGF21 treatment (2788 ± 519 nmol g-1  h-1 ; P < 0.001). FGF21 also increased hepatic incomplete FAO by 12% in both groups and extramitochondrial FAO by 89 and 56% in WT and LPGC-1α mice, respectfully (P = 0.001), and lowered hepatic triacylglycerol by 30-40% (P < 0.001). Chronic treatment with FGF21 lowered body weight and fat mass (P < 0.05), while increasing food consumption (P < 0.05), total energy expenditure [7.3 ± 0.60 versus 6.6 ± 0.39 kcal (12 h)-1 in WT mice; P = 0.009] and resting energy expenditure [5.4 ± 0.89 versus 4.6 ± 0.21 kcal (12 h)-1 in WT mice; P = 0.005]. Interestingly, FGF21 only increased ambulatory activity in the WT mice (P = 0.03), without a concomitant increase in non-resting energy expenditure. In conclusion, although reduced hepatic PGC-1α expression was not necessary for FGF21 to increase FAO, it does appear to mediate FGF21-induced changes in total and resting energy expenditure and ambulatory activity in lean mice.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/farmacologia , Fígado/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Colesterol/sangue , Ácidos Graxos não Esterificados/sangue , Insulina/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA