Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 19(Suppl 13): 547, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717650

RESUMO

BACKGROUND: Glycation is a one of the post-translational modifications (PTM) where sugar molecules and residues in protein sequences are covalently bonded. It has become one of the clinically important PTM in recent times attributed to many chronic and age related complications. Being a non-enzymatic reaction, it is a great challenge when it comes to its prediction due to the lack of significant bias in the sequence motifs. RESULTS: We developed a classifier, GlyStruct based on support vector machine, to predict glycated and non-glycated lysine residues using structural properties of amino acid residues. The features used were secondary structure, accessible surface area and the local backbone torsion angles. For this work, a benchmark dataset was extracted containing 235 glycated and 303 non-glycated lysine residues. GlyStruct demonstrated improved performance of approximately 10% in comparison to benchmark method of Gly-PseAAC. The performance for GlyStruct on the metrics, sensitivity, specificity, accuracy and Mathew's correlation coefficient were 0.7013, 0.7989, 0.7562, and 0.5065, respectively for 10-fold cross-validation. CONCLUSION: Glycation has emerged to be one of the clinically important PTM of proteins in recent times. Therefore, the development of computational tools become necessary to predict glycation, which could help medical professionals administer drugs and manage patients more effectively. The proposed predictor manages to classify glycated and non-glycated lysine residues with promising results consistently on various cross-validation schemes and outperforms other state of the art methods.


Assuntos
Algoritmos , Aminoácidos/química , Biologia Computacional/métodos , Sequência de Aminoácidos , Área Sob a Curva , Benchmarking , Glicosilação , Humanos , Peptídeos/química , Máquina de Vetores de Suporte
2.
BMC Genomics ; 19(Suppl 9): 982, 2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-30999862

RESUMO

BACKGROUND: Post-translational modifications are viewed as an important mechanism for controlling protein function and are believed to be involved in multiple important diseases. However, their profiling using laboratory-based techniques remain challenging. Therefore, making the development of accurate computational methods to predict post-translational modifications is particularly important for making progress in this area of research. RESULTS: This work explores the use of four half-sphere exposure-based features for computational prediction of sumoylation sites. Unlike most of the previously proposed approaches, which focused on patterns of amino acid co-occurrence, we were able to demonstrate that protein structural based features could be sufficiently informative to achieve good predictive performance. The evaluation of our method has demonstrated high sensitivity (0.9), accuracy (0.89) and Matthew's correlation coefficient (0.78-0.79). We have compared these results to the recently released pSumo-CD method and were able to demonstrate better performance of our method on the same evaluation dataset. CONCLUSIONS: The proposed predictor HseSUMO uses half-sphere exposures of amino acids to predict sumoylation sites. It has shown promising results on a benchmark dataset when compared with the state-of-the-art method. The extracted data of this study can be accessed at https://github.com/YosvanyLopez/HseSUMO .


Assuntos
Algoritmos , Aminoácidos/química , Biologia Computacional/métodos , Proteínas/química , Proteínas/metabolismo , Sumoilação , Sítios de Ligação , Humanos , Máquina de Vetores de Suporte
3.
Comput Biol Chem ; 87: 107235, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32604027

RESUMO

Post-translational modifications are considered important molecular interactions in protein science. One of these modifications is "sumoylation" whose computational detection has recently become a challenge. In this paper, we propose a new computational predictor which makes use of the sine and cosine of backbone torsion angles and the accessible surface area for predicting sumoylation sites. The aforementioned features were computed for all the proteins in our benchmark dataset, and a training matrix consisting of sumoylation and non-sumoylation sites was ultimately created. This training matrix was balanced by undersampling the majority class (non-sumoylation sites) using the NearMiss method. Finally, an AdaBoost classifier was used for discriminating between sumoylation and non-sumoylation sites. Our predictor was called "C-iSumo" because of its effective use of circular functions. C-iSumo was compared with another predictor which was outperformed in statistical metrics such as sensitivity (0.734), accuracy (0.746) and Matthews correlation coefficient (0.494).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA