Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(29): 19800-19808, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38976349

RESUMO

Liquid metal (LM) nanodroplets possess intriguing surface properties, thus offering promising potential in chemical synthesis, catalysis, and biomedicine. However, the reaction kinetics and product growth at the surface of LM nanodroplets are significantly influenced by the interface involved, which has not been thoroughly explored and understood. Here, we propose an interface engineering strategy, taking a spontaneous galvanic reaction between Ga0 and AuCl4- ions as a representative example, to successfully modulate the growth of heterostructures on the surface of Ga-based LM nanodroplets by establishing a dielectric interface with a controllable thickness between LM and reactive surroundings. Combining high-resolution electron energy-loss spectroscopy (EELS) analysis and theoretical simulation, it was found that the induced charge distribution at the interface dominates the spatiotemporal distribution of the reaction sites. Employing tungsten oxide (WOx) with varying thicknesses as the demonstrated dielectric interface of LM, Ga@WOx@Au with distinct core-shell-satellite or dimer-like heterostructures has been achieved and exhibited different photoresponsive capabilities for photodetection. Understanding the kinetics of product growth and the regulatory strategy of the dielectric interface provides an experimental approach to controlling the structure and properties of products in LM nanodroplet-involved chemical processes.

2.
Small ; 20(20): e2307129, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38126615

RESUMO

Organic luminescent materials are indispensable in optoelectronic displays and solid-state luminescence applications. Compared with single-component, multi-component crystalline materials can improve optoelectronic characteristics. This work forms a series of full-spectrum tunable luminescent charge-transfer (CT) cocrystals ranging from 400 to 800 nm through intermolecular collaborative self-assembly. What is even more interesting is that o-TCP-Cor(x)-Pe(1-x), p-TCP-Cor(x)-Pe(1-x), and o-TCP-AN(x)-TP(1-x) alloys are prepared based on cocrystals by doping strategies, which correspondingly achieve the stepless color change from blue (CIE [0.22, 0.44]) to green (CIE [0.16, 0.14]), from green (CIE [0.27, 0.56]) to orange (CIE [0.58, 0.42]), from yellow (CIE [0.40, 0.57]) to red (CIE [0.65, 0.35]). The work provides an efficient method for precisely synthesizing new luminescent organic semiconductor materials and lays a solid foundation for developing advanced organic solid-state displays.

3.
Chem Rec ; : e202400098, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289830

RESUMO

Industry, agriculture, and a growing population all have a major impact on the scarcity of clean-water. Desalinating or purifying contaminated water for human use is crucial. The combination of thermal membrane systems can outperform conventional desalination with the help of synergistic management of the water-energy nexus. High energy requirement for desalination is a key challenge for desalination cost and its commercial feasibility. The solution to these problems requires the intermarriage of multidisciplinary approaches such as electrochemistry, chemical, environmental, polymer, and materials science and engineering. The most feasible method for producing high-quality freshwater with a reduced carbon footprint is demanding incorporation of industrial low-grade heat with membrane distillation (MD). More precisely, by using a reverse electrodialysis (RED) setup that is integrated with MD, salinity gradient energy (SGE) may be extracted from highly salinized MD retentate. Integrating MD-RED can significantly increase energy productivity without raising costs. This review provides a comprehensive summary of the prospects, unresolved issues, and developments in this cutting-edge field. In addition, we summarize the distinct physicochemical characteristics of the membranes employed in MD and RED, together with the approaches for integrating them to facilitate effective water recovery and energy conversion from salt gradients and freshwater.

4.
Chem Biodivers ; 21(6): e202400150, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38548660

RESUMO

Experiments were conducted in this study on the co-hydropyrolysis of three components of biomass (cellulose, hemicellulose, and lignin) and HDPE by using SR-Pd/Trap-HZ-5 as catalyst. To control the variable, we use the same experiment conditions in co-hydropyrolysis: Si/Al ratio of 50, Pd load 1 %, catalyst to reactant ratio of 1 : 10, 1 MPa, 400 °C, reaction time 1 h. Use XRD, TEM, BET, and NH3-TPD to confirm catalyst successful synthesis; use pine sawdust (PW) co-hydropyrolysis with HDPE to analyse catalytic activity; and use GC/MS to characterize the chemical composition of the bio-oil from the co-hydropyrolysis of biomass components and HDPE. The results show that cellulose has a significant synergistic effect with aromatic hydrocarbon production, whose selectivity was 93.3 %; hemicellulose has a synergistic effect; aromatic selectivity can reach 75.1 %; and a negative synergistic effect between lignin and HDPE was shown as the selectivity of aromatic hydrocarbons decreased from 62.1 % to 15.6 %.


Assuntos
Biomassa , Celulose , Hidrocarbonetos Aromáticos , Polissacarídeos , Pirólise , Zeolitas , Catálise , Hidrocarbonetos Aromáticos/química , Polissacarídeos/química , Celulose/química , Zeolitas/química , Lignina/química
5.
Mol Med ; 29(1): 158, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996809

RESUMO

BACKGROUND: Maresin1 (MaR1) is a potent lipid mediator that exhibits significant anti-inflammatory activity in the context of several inflammatory diseases. A previous study reported that MaR1 could suppress MSU crystal-induced peritonitis in mice. To date, the molecular mechanism by which MaR1 inhibits MSU crystal-induced inflammation remains poorly understood. METHODS: Mousebone marrow-derived macrophages (BMDMs) were pretreated with MaR1 and then stimulated with FAs (palmitic, C16:0 and stearic, C18:0) plus MSU crystals (FAs + MSUc). In vivo, the effects of MaR1 treatment or Prdx5 deficiency on MSUc induced peritonitis and arthritis mouse models were evaluated. RESULTS: The current study indicated that MaR1 effectively suppressed MSUc induced inflammation in vitro and in vivo. MaR1 reversed the decrease in Prdx5 mRNA and protein levels induced by FAs + MSUc. Further assays demonstrated that MaR1 acceleratedPrdx5 expression by regulating the Keap1-Nrf2 signaling axis. Activation of AMPK by Prdx5 improved homeostasis of the TXNIP and TRX proteins and alleviated mitochondrial fragmentation. In addition, Prdx5 overexpression inhibited the expression of CPT1A, a key enzyme for fatty acid oxidation (FAO). Prdx5 protected against defects in FA + MSUc induced FAO and the urea cycle. CONCLUSION: MaR1 treatment effectively attenuated MSUc induced inflammation by upregulating Prdx5 expression. Our study provides a new strategy by which Prdx5 may help prevent acute gout attacks.


Assuntos
Peritonite , Ácido Úrico , Camundongos , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Inflamação/metabolismo
6.
Small ; 19(15): e2206404, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36610052

RESUMO

Atomic understanding of a chemical reaction can realize the programmable design and synthesis of desired products with specific compositions and structures. Through directly monitoring the phase transition and tracking the dynamic evolution of atoms in a chemical reaction, in situ transmission electron microscopy (TEM) techniques offer the feasibility of revealing the reaction kinetics at the atomic level. Nevertheless, such investigation is quite challenging, especially for reactions involving multi-phase and complex interfaces, such as the widely adopted carbothermal reduction (CTR) reactions. Herein, in-situ TEM is applied to monitor the CTR of Co3 O4 nanocubes on reduced graphene oxide nanosheets. Together with the first-principle calculation, the migration route of Co atoms during the phase transition of the CTR reaction is revealed. Meanwhile, the interfacial edge-dislocations/stress-gradient is identified as a result of the atomistic diffusion, which in turn can affect the morphology variation of the reactants. Accordingly, controllable synthesis of Co-based nanostructure with a desirable phase and structure has been achieved. This work not only provides atomic kinetic insight into CTR reactions but also offers a novel strategy for the design and synthesis of functional nanostructures for emerging energy technologies.

7.
Opt Express ; 31(12): 20265-20273, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37381425

RESUMO

The degradation of AlGaN-based UVC LEDs under constant temperature and constant current stress for up to 500 hrs was analyzed in this work. During each degradation stage, the two-dimensional (2D) thermal distributions, I-V curves, optical powers, combining with focused ion beam and scanning electron microscope (FIB/SEM), were thoroughly tested and analyzed the properties and failure mechanisms of UVC LEDs. The results show that: 1) the opto-electrical characteristics measured before/during stress indicate that the increased leakage current and the generation of stress-induced defects increase the non-radiative recombination in the early stress stage, resulting in a decrease in optical power; 2) the increase of temperature caused by the deterioration of the Cr/Al layer of p-metal after 48 hrs of stress aggravates the optical power in UVC LEDs. The 2D thermal distribution in conjunction with FIB/SEM provide a fast and visual way to precisely locate and analyze the failure mechanisms of UVC LEDs.

8.
Neuroepidemiology ; 57(1): 35-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36577395

RESUMO

AIMS: The aim of the study was to investigate the socio-demographic factors and systemic conditions associated with non-arteritic anterior ischaemic optic neuropathy (NAION). METHODS: This was a nationwide population-based retrospective case-controlled study that recruited 9,261 NAION patients selected from the Taiwan National Health Insurance Research Database. The control group consisted of 9,261 age-, sex-, and index date-matched non-NAION patients recruited from the Taiwan Longitudinal Health Insurance Database, 2000. NAION was designated in the database by the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) as "code 377.41: ischaemic optic neuropathy without ICD-9-CM code 446.5: giant cell arteritis." Associated socio-demographic factors and systemic medical conditions were analysed using the McNemar's test, and continuous variables were analysed using the paired t test. The odds ratio (OR) and adjusted OR of developing NAION were compared using univariate logistic regression and multivariable logistic regression analyses, respectively. RESULTS: Patients with systemic conditions such as diabetes mellitus, hypertension, hyperlipidaemia, chronic kidney disease, and hypotension were more likely to develop NAION than controls (adjusted OR = 1.81, 95% confidence interval [CI] = 1.67-1.97, p < 0.0001; adjusted OR = 1.46, 95% CI = 1.36-1.57, p < 0.0001; adjusted OR = 1.44, 95% CI = 1.33-1.57, p < 0.0001; adjusted OR = 3.26, 95% CI = 2.65-4.01, p < 0.0001; adjusted OR = 2.32, 95% CI = 1.31-4.10, p = 0.0039, respectively). CONCLUSIONS: NAION is strongly associated with diabetes mellitus, hypertension, hyperlipidaemia, chronic kidney disease, and hypotension.


Assuntos
Hipertensão , Hipotensão , Neuropatia Óptica Isquêmica , Insuficiência Renal Crônica , Humanos , Estudos Retrospectivos , Neuropatia Óptica Isquêmica/epidemiologia , Neuropatia Óptica Isquêmica/complicações , Taiwan/epidemiologia , Fatores de Risco , Hipertensão/epidemiologia , Hipotensão/complicações , Insuficiência Renal Crônica/complicações , Demografia
9.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677585

RESUMO

With the continuous exploration of low-dimensional nanomaterials, two dimensional metal oxides (2DMOs) has been received great interest. However, their further development is limited by the high cost in the preparation process and the unstable states caused by the polarization of surface chemical bonds. Recently, obtaining mental oxides via liquid metals have been considered a surprising method for obtaining 2DMOs. Therefore, how to scientifically choose different preparation methods to obtain 2DMOs applying in different application scenarios is an ongoing process worth discussing. This review will provide some new opportunities for the rational design of 2DMOs based on liquid metals. Firstly, the surface oxidation process and in situ electrical replacement reaction process of liquid metals are introduced in detail, which provides theoretical basis for realizing functional 2DMOs. Secondly, by simple sticking method, gas injection method and ultrasonic method, 2DMOs can be obtained from liquid metal, the characteristics of each method are introduced in detail. Then, this review provides some prospective new ideas for 2DMOs in other energy-related applications such as photodegradation, CO2 reduction and battery applications. Finally, the present challenges and future development prospects of 2DMOs applied in liquid metals are presented.

10.
Environ Sci Technol ; 56(22): 16221-16229, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36287592

RESUMO

Traditional technologies such as precipitation and coagulation have been adopted for fluoride-rich and silica-rich wastewater treatment, respectively, but waste solid generation and low wastewater processing efficiency are still the looming concern. Efficient resource recovery technologies for different wastewater treatments are scarce for environment and industry sustainability. Herein, a resource capture ultrafiltration-bipolar membrane electrodialysis (RCUF-BMED) system was designed into a closed-loop process for simultaneous capture and recovery of fluoride and silica as sodium silicofluoride (Na2SiF6) from mixed fluoride-rich and silica-rich wastewaters, as well as achieving zero liquid discharge. This RCUF-BMED system comprised two key parts: (1) capture of fluoride and silica from two wastewaters using acid, and recovery of the Na2SiF6 using base by UF and (2) UF permeate conversion for acid/base and freshwater generation by BMED. With the optimized RCUF-BMED system, fluoride and silica can be selectively captured from wastewater with removal efficiencies higher than 99%. The Na2SiF6 recovery was around 72% with a high purity of 99.1%. The aging and cyclic experiments demonstrated the high stability and recyclability of the RCUF-BMED system. This RCUF-BMED system has successfully achieved the conversion of toxic fluoride and silica into valuable Na2SiF6 from mixed wastewaters, which shows great application potential in the industry-resource-environment nexus.


Assuntos
Ultrafiltração , Águas Residuárias , Fluoretos , Dióxido de Silício , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA