Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Neuroscience ; 483: 82-94, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34920023

RESUMO

Stroke is a leading cause of severe disability that often presents with unilateral motor impairment. Conventional rehabilitation approaches focus on motor practice of the affected limb and aim to suppress brain activity in the contralesional hemisphere. Conversely, exercise of the less-affected limb promotes contralesional brain activity which is typically viewed as contraindicated in stroke recovery due to the interhemispheric inhibitory influence onto the ipsilesional hemisphere. Yet, high-force unimanual handgrip contractions are known to increase ipsilateral brain activation in control participants, and it remains to be determined if high-force contractions with the less-affected limb would promote ipsilateral brain activation in participants with stroke (i.e., the ipsilesional hemisphere). Therefore, this study aimed to determine how parametric increases in handgrip force during repeated contractions with the less-affected limb impacts brain activity bilaterally in participants with stroke and in a cohort of neurologically intact controls. Participants performed repeated submaximal contractions at 25%, 50%, and 75% of their maximum voluntary contraction during separate functional magnetic resonance imaging brain scans. Brain activation during the tasks was quantified as the percent change from resting levels. In this study, higher force contractions were found to increase brain activation in the ipsilesional (stroke)/ipsilateral (controls) hemisphere in both groups (p = .002), but no between group differences were observed. These data suggest that high-force exercise with the less-affected limb may promote ipsilesional cortical plasticity to promote motor recovery of the affected-limb in participants with stroke.


Assuntos
Córtex Motor , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Lateralidade Funcional/fisiologia , Força da Mão , Humanos , Imageamento por Ressonância Magnética , Córtex Motor/fisiologia , Acidente Vascular Cerebral/patologia , Reabilitação do Acidente Vascular Cerebral/métodos
3.
Neuroscience ; 452: 111-125, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33197497

RESUMO

Imaging and brain stimulation studies seem to correct the classical understanding of how brain networks, rather than contralateral focal areas, control the generation of unimanual voluntary force. However, the scaling and hemispheric-specificity of network activation remain less understood. Using fMRI, we examined the effects of parametrically increasing right-handgrip force on activation and functional connectivity among the sensorimotor network bilaterally with 25%, 50%, and 75% maximal voluntary contractions (MVC). High force (75% MVC) unimanual handgrip contractions resulted in greater ipsilateral motor activation and functional connectivity with the contralateral hemisphere compared to a low force 25% MVC condition. The ipsilateral motor cortex activation and network strength correlated with relative handgrip force (% MVC). Increases in unimanual handgrip force resulted in greater ipsilateral sensorimotor activation and greater functional connectivity between hemispheres within the sensorimotor network.


Assuntos
Força da Mão , Córtex Motor , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética
4.
Physiol Rep ; 7(14): e14179, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31317660

RESUMO

Hoffmann (H-) reflex amplitudes in plantar flexor soleus muscle are modulated by posture, yet dorsiflexor tibialis anterior (TA) H-reflex parameters have sparingly been studied. The purpose was to investigate modulation of the TA H-reflex when postural demands are increased from sitting to standing. In this study, data from 18 participants (Age: 25 ± 4 years, Height: 170.9 ± 9.5 cm, Weight: 75.9 ± 17.2 kg) allowed comparison of two experimental conditions involving different postures (i.e. sitting and standing). Maximal amplitude of the TA H-reflex (Hmax ) as a percent of the maximal M-wave amplitude (Mmax ) (Hmax (% Mmax )) during sitting and standing was compared using ANOVA. Modulation of TA H-reflex amplitude was found: Eleven participants showed facilitation and seven showed no change of reflex amplitudes. Only participants in the facilitation group showed modulation related to changes in posture (sitting: 8.7 ± 2.9%; standing: 14.8 ± 6.7%, P = 0.005). These data provide evidence of the sensitivity to posture of TA H-reflexes. As with task-dependent changes in soleus H-reflexes, presynaptic regulation of Ia afferent transmission is a possible mechanism. Further investigations into causes of modulation are warranted.


Assuntos
Reflexo H , Músculo Esquelético/fisiologia , Postura Sentada , Posição Ortostática , Adulto , Feminino , Humanos , Masculino , Músculo Esquelético/inervação
5.
Int J MS Care ; 20(2): 92-100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670495

RESUMO

BACKGROUND: Pilates is a series of exercises based on whole-body movement and may improve mobility in people with multiple sclerosis (MS). The purpose of this study was to determine the effect of Pilates on walking performance in people with MS. METHODS: 30 individuals with MS who were not restricted to a wheelchair or scooter (Patient-Determined Disease Steps scale score <7) were randomized to receive Pilates (twice weekly) and massage therapy (once weekly) or once-weekly massage therapy only (control group). The Pilates was delivered in a group setting (five to ten participants per session). The primary outcome was change in walking performance (6-Minute Walk Test) after 12 weeks. Secondary outcomes included functional ability (Timed Up and Go test), balance (Fullerton Advanced Balance Scale), flexibility (sit and reach test), body composition (dual-energy X-ray absorptiometry), core endurance (plank-hold test), and muscle strength and voluntary activation (quadriceps). Intention-to-treat analysis was performed using a two-factor repeated-measures analysis of variance. RESULTS: Walking distance increased by a mean (SD) of 52.4 (40.2) m in the Pilates group versus 15.0 (34.1) m in the control group (group × time, P = .01). Mean (SD) time to complete the Timed Up and Go test decreased by 1.5 (2.8) seconds in the Pilates group versus an increase of 0.3 (0.9) seconds in the control group (group × time, P = .03). There were no other significant differences between groups over time. CONCLUSIONS: Pilates improved walking performance and functional ability in persons with MS and is a viable exercise option to help manage the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA