Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
N Engl J Med ; 386(11): 1026-1033, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35294812

RESUMO

BACKGROUND: Hereditary angioedema is characterized by recurrent and unpredictable swellings that are disabling and potentially fatal. Selective inhibition of plasma prekallikrein production by antisense oligonucleotide treatment (donidalorsen) may reduce the frequency of attacks and the burden of disease. METHODS: In this phase 2 trial, we randomly assigned, in a 2:1 ratio, patients with hereditary angioedema with C1 inhibitor deficiency to receive four subcutaneous doses of either donidalorsen (80 mg) or placebo, with one dose administered every 4 weeks. The primary end point was the time-normalized number of investigator-confirmed angioedema attacks per month (attack rate) between week 1 (baseline) and week 17. Secondary end points included quality of life, as measured with the Angioedema Quality of Life Questionnaire (scores range from 0 to 100, with higher scores indicating worse quality of life), and safety. RESULTS: A total of 20 patients were enrolled, of whom 14 were randomly assigned to receive donidalorsen and 6 to receive placebo. The mean monthly rate of investigator-confirmed angioedema attacks was 0.23 (95% confidence interval [CI], 0.08 to 0.39) among patients receiving donidalorsen and 2.21 (95% CI, 0.58 to 3.85) among patients receiving placebo (mean difference, -90%; 95% CI, -96 to -76; P<0.001). The mean change from baseline to week 17 in the Angioedema Quality of Life Questionnaire score was -26.8 points in the donidalorsen group and -6.2 points in the placebo group (mean difference, -20.7 points; 95% CI, -32.7 to -8.7). The incidence of mild-to-moderate adverse events was 71% among patients receiving donidalorsen and 83% among those receiving placebo. CONCLUSIONS: Among patients with hereditary angioedema, donidalorsen treatment resulted in a significantly lower rate of angioedema attacks than placebo in this small, phase 2 trial. (Funded by Ionis Pharmaceuticals; ISIS 721744-CS2 ClinicalTrials.gov number, NCT04030598.).


Assuntos
Angioedemas Hereditários , Oligonucleotídeos Antissenso , Pré-Calicreína , Adulto , Feminino , Humanos , Masculino , Angioedemas Hereditários/tratamento farmacológico , Intervalo Livre de Doença , Esquema de Medicação , Oligonucleotídeos Antissenso/efeitos adversos , Oligonucleotídeos Antissenso/uso terapêutico , Gravidade do Paciente , Pré-Calicreína/antagonistas & inibidores , Pré-Calicreína/genética , Qualidade de Vida , RNA Mensageiro/antagonistas & inibidores
2.
Arterioscler Thromb Vasc Biol ; 44(7): 1658-1670, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38752349

RESUMO

BACKGROUND: Polyphosphate (polyP), a procoagulant released from platelets, activates coagulation via the contact system and modulates cardiomyocyte viability. High-dose intravenous polyP is lethal in mice, presumably because of thrombosis. Previously, we showed that HRG (histidine-rich glycoprotein) binds polyP and attenuates its procoagulant effects. In this study, we investigated the mechanisms responsible for the lethality of intravenous polyP in mice and the impact of HRG on this process. METHODS: The survival of wild-type or HRG-deficient mice given intravenous synthetic or platelet-derived polyP in doses up to 50 mg/kg or saline was compared. To determine the contribution of thrombosis, the effect of FXII (factor XII) knockdown or enoxaparin on polyP-induced fibrin deposition in the lungs was examined. To assess cardiotoxicity, the ECG was continuously monitored, the levels of troponin I and the myocardial band of creatine kinase were quantified, and the viability of a cultured murine cardiomyocyte cell line exposed to polyP in the absence or presence of HRG was determined. RESULTS: In HRG-deficient mice, polyP was lethal at 30 mg/kg, whereas it was lethal in wild-type mice at 50 mg/kg. Although FXII knockdown or enoxaparin administration attenuated polyP-induced fibrin deposition in the lungs, neither affected mortality. PolyP induced dose-dependent ECG abnormalities, including heart block and ST-segment changes, and increased the levels of troponin and myocardial band of creatine kinase, effects that were more pronounced in HRG-deficient mice than in wild-type mice and were attenuated when HRG-deficient mice were given supplemental HRG. Consistent with its cardiotoxicity, polyP reduced the viability of cultured cardiomyocytes in a dose-dependent manner, an effect attenuated with supplemental HRG. CONCLUSIONS: High-dose intravenous polyP is cardiotoxic in mice, and HRG modulates this effect.


Assuntos
Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos , Polifosfatos , Proteínas , Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Polifosfatos/toxicidade , Proteínas/metabolismo , Proteínas/genética , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Masculino , Fibrina/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Relação Dose-Resposta a Droga , Trombose/prevenção & controle , Trombose/induzido quimicamente , Trombose/metabolismo , Trombose/genética , Trombose/patologia , Troponina I/metabolismo , Modelos Animais de Doenças , Cardiotoxicidade , Linhagem Celular , Eletrocardiografia , Coagulação Sanguínea/efeitos dos fármacos
3.
Mol Ther ; 32(1): 140-151, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37980543

RESUMO

Fibrolamellar hepatocellular carcinoma (FLC) is a rare liver cancer caused by a dominant recurrent fusion of the heat shock protein (DNAJB1) and the catalytic subunit of protein kinase A (PRKACA). Current therapies such as chemotherapy and radiation have limited efficacy, and new treatment options are needed urgently. We have previously shown that FLC tumors are dependent on the fusion kinase DNAJB1::PRKACA, making the oncokinase an ideal drug target. mRNA degrading modalities such as antisense oligonucleotides or small interfering RNAs (siRNAs) provide an opportunity to specifically target the fusion junction. Here, we identify a potent and specific siRNA that inhibits DNAJB1::PRKACA expression. We found expression of the asialoglycoprotein receptor in FLC to be maintained at sufficient levels to effectively deliver siRNA conjugated to the GalNAc ligand. We observe productive uptake and siRNA activity in FLC patient-derived xenografts (PDX) models in vitro and in vivo. Knockdown of DNAJB1::PRKACA results in durable growth inhibition of FLC PDX in vivo with no detectable toxicities. Our results suggest that this approach could be a treatment option for FLC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/metabolismo , RNA Interferente Pequeno/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , RNA de Cadeia Dupla , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo
4.
Nucleic Acids Res ; 51(4): 1583-1599, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36727438

RESUMO

Inefficient endosomal escape remains the primary barrier to the broad application of oligonucleotide therapeutics. Liver uptake after systemic administration is sufficiently robust that a therapeutic effect can be achieved but targeting extrahepatic tissues remains challenging. Prior attempts to improve oligonucleotide activity using small molecules that increase the leakiness of endosomes have failed due to unacceptable toxicity. Here, we show that the well-tolerated and orally bioavailable synthetic sphingolipid analog, SH-BC-893, increases the activity of antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs) up to 200-fold in vitro without permeabilizing endosomes. SH-BC-893 treatment trapped endocytosed oligonucleotides within extra-lysosomal compartments thought to be more permeable due to frequent membrane fission and fusion events. Simultaneous disruption of ARF6-dependent endocytic recycling and PIKfyve-dependent lysosomal fusion was necessary and sufficient for SH-BC-893 to increase non-lysosomal oligonucleotide levels and enhance their activity. In mice, oral administration of SH-BC-893 increased ASO potency in the liver by 15-fold without toxicity. More importantly, SH-BC-893 enabled target RNA knockdown in the CNS and lungs of mice treated subcutaneously with cholesterol-functionalized duplexed oligonucleotides or unmodified ASOs, respectively. Together, these results establish the feasibility of using a small molecule that disrupts endolysosomal trafficking to improve the activity of oligonucleotides in extrahepatic tissues.


Assuntos
Endossomos , Oligonucleotídeos , Animais , Camundongos , Oligonucleotídeos/metabolismo , Endossomos/genética , Endocitose/fisiologia , Transporte Biológico , Oligonucleotídeos Antissenso/genética , RNA Interferente Pequeno/genética
5.
Platelets ; 35(1): 2290916, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38099327

RESUMO

Platelets are core components of thrombi but their effect on thrombus burden during deep vein thrombosis (DVT) has not been fully characterized. We examined the role of thrombopoietin-altered platelet count on thrombus burden in a murine stasis model of DVT. To modulate platelet count compared to baseline, CD1 mice were pretreated with thrombopoietin antisense oligonucleotide (THPO-ASO, 56% decrease), thrombopoietin mimetic (TPO-mimetic, 36% increase), or saline (within 1%). Thrombi and vein walls were examined on postoperative days (POD) 3 and 7. Thrombus weights on POD 3 were not different between treatment groups (p = .84). The mean thrombus weights on POD 7 were significantly increased in the TPO-mimetic cohort compared to the THPO-ASO (p = .005) and the saline (p = .012) cohorts. Histological grading at POD 3 revealed a significantly increased smooth muscle cell presence in the thrombi and CD31 positive channeling in the vein wall of the TPO-mimetic cohort compared to the saline and THPO-ASO cohorts (p < .05). No differences were observed in histology on POD 7. Thrombopoietin-induced increased platelet count increased thrombus weight on POD 7 indicating platelet count may regulate thrombus burden during early resolution of venous thrombi in this murine stasis model of DVT.


Deep vein thrombosis (DVT) is a pathology in which blood clots form in the deep veins of our body. Usually occurring in the legs, these clots can be dangerous if they dislodge and travel to the heart and are pumped into the lungs. Often these clots do not travel and heal where they formed. However, as the body heals the clot it may also cause damage to the vein wall and predispose the patient to future clots, i.e., the biggest risk factor for a second clot is the first clot. DVT can also cause symptoms of pain, swelling, and redness in the long-term, leading to post-thrombotic syndrome where the initial symptoms of the clot persist for a long time. All blood clots have common components of red blood cells, white blood cells, platelets, and fibrin in varying concentrations. Humans maintain a platelet count between 150 and 400 thousand platelets per microliter of our blood. However, diseases like cancer or medications like chemotherapy can cause a change in our body's platelet count. The effect of a changing platelet count on the size (clot burden) of DVT clot and how platelet count could affect DVT as the clot heals is not fully understood. Studying this might help us develop better targets and treat patients with a wide range of platelet counts who experience DVT. In this study, we intentionally decreased, left unchanged, and increased platelet counts in mice and then created a DVT to study what the effect of low, normal, and high platelet counts, respectively, would be on the clot burden. We observed that mice with higher platelet counts had a higher clot burden during the early part of the healing process of the clot. Within this study, we can conclude that higher platelet counts may lead to higher clot burden in DVT which furthers our understanding of how platelet count affects clot burden during DVT.


Assuntos
Trombose , Trombose Venosa , Humanos , Camundongos , Animais , Trombose Venosa/tratamento farmacológico , Trombose Venosa/patologia , Contagem de Plaquetas , Trombopoetina/farmacologia , Plaquetas/patologia
6.
Blood ; 138(18): 1705-1720, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34077955

RESUMO

Alterations in KRAS have been identified as the most recurring somatic variants in the multiple myeloma (MM) mutational landscape. Combining DNA and RNA sequencing, we studied 756 patients and observed KRAS as the most frequently mutated gene in patients at diagnosis; in addition, we demonstrated the persistence or de novo occurrence of the KRAS aberration at disease relapse. Small-molecule inhibitors targeting KRAS have been developed; however, they are selective for tumors carrying the KRASG12C mutation. Therefore, there is still a need to develop novel therapeutic approaches to target the KRAS mutational events found in other tumor types, including MM. We used AZD4785, a potent and selective antisense oligonucleotide that selectively targets and downregulates all KRAS isoforms, as a tool to dissect the functional sequelae secondary to KRAS silencing in MM within the context of the bone marrow niche and demonstrated its ability to significantly silence KRAS, leading to inhibition of MM tumor growth, both in vitro and in vivo, and confirming KRAS as a driver and therapeutic target in MM.


Assuntos
Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mutação/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Humanos , Camundongos SCID , Terapia de Alvo Molecular , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Oligonucleotídeos Antissenso/uso terapêutico , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêutico
7.
J Pathol ; 250(1): 95-106, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31595971

RESUMO

Prekallikrein (PKK, also known as Fletcher factor and encoded by the gene KLKB1 in humans) is a component of the contact system. Activation of the contact system has been implicated in lethality in fulminant sepsis models. Pneumonia is the most frequent cause of sepsis. We sought to determine the role of PKK in host defense during pneumosepsis. To this end, mice were infected with the common human pathogen Klebsiella pneumoniae via the airways, causing an initially localized infection of the lungs with subsequent bacterial dissemination and sepsis. Mice were treated with a selective PKK-directed antisense oligonucleotide (ASO) or a scrambled control ASO for 3 weeks prior to infection. Host response readouts were determined at 12 or 36 h post-infection, including genome-wide messenger RNA profiling of lungs, or mice were followed for survival. PKK ASO treatment inhibited constitutive hepatic Klkb1 mRNA expression by >80% and almost completely abolished plasma PKK activity. Klkb1 mRNA could not be detected in lungs. Pneumonia was associated with a progressive decline in PKK expression in mice treated with control ASO. PKK ASO administration was associated with a delayed mortality, reduced bacterial burdens, and diminished distant organ injury. While PKK depletion did not influence lung pathology or neutrophil recruitment, it was associated with an upregulation of multiple innate immune signaling pathways in the lungs already prior to infection. Activation of the contact system could not be detected, either during infection in vivo or at the surface of Klebsiella in vitro. These data suggest that circulating PKK confines pro-inflammatory signaling in the lung by a mechanism that does not involve contact system activation, which in the case of respiratory tract infection may impede early protective innate immunity. © 2019 Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Imunidade Inata , Infecções por Klebsiella/enzimologia , Klebsiella pneumoniae/patogenicidade , Pulmão/enzimologia , Pneumonia Bacteriana/enzimologia , Pré-Calicreína/metabolismo , Sepse/enzimologia , Animais , Modelos Animais de Doenças , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/prevenção & controle , Klebsiella pneumoniae/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Oligonucleotídeos Antissenso/administração & dosagem , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/prevenção & controle , Pré-Calicreína/genética , Sepse/imunologia , Sepse/microbiologia , Sepse/prevenção & controle , Transdução de Sinais
8.
Nucleic Acids Res ; 47(9): 4375-4392, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30927008

RESUMO

Antisense oligonucleotides (ASOs) modulate cellular target gene expression through direct binding to complementary RNA. Advances in ASO chemistry have led to the development of phosphorothioate (PS) ASOs with constrained-ethyl modifications (cEt). These next-generation cEt-ASOs can enter cells without transfection reagents. Factors involved in intracellular uptake and trafficking of cEt-ASOs leading to successful target knockdown are highly complex and not yet fully understood. AZD4785 is a potent and selective therapeutic KRAS cEt-ASO currently under clinical development for the treatment of cancer. Therefore, we used this to investigate mechanisms of cEt-ASO trafficking across a panel of cancer cells. We found that the extent of ASO-mediated KRAS mRNA knockdown varied significantly between cells and that this did not correlate with bulk levels of intracellular accumulation. We showed that in cells with good productive uptake, distribution of ASO was perinuclear and in those with poor productive uptake distribution was peripheral. Furthermore, ASO rapidly trafficked to the late endosome/lysosome in poor productive uptake cells compared to those with more robust knockdown. An siRNA screen identified several factors mechanistically involved in productive ASO uptake, including the endosomal GTPase Rab5C. This work provides novel insights into the trafficking of cEt-ASOs and mechanisms that may determine their cellular fate.


Assuntos
Neoplasias/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Fosforotioatos/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas rab5 de Ligação ao GTP/genética , Endossomos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HT29 , Humanos , Neoplasias/patologia , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Fosforotioatos/farmacologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética
9.
Proc Natl Acad Sci U S A ; 115(41): E9687-E9696, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30254165

RESUMO

Two of the most predominant features of the Alzheimer's disease (AD) brain are deposition of ß-amyloid (Aß) plaques and inflammation. The mechanism behind these pathologies remains unknown, but there is evidence to suggest that inflammation may predate the deposition of Aß. Furthermore, immune activation is increasingly being recognized as a major contributor to the pathogenesis of the disease, and disorders involving systemic inflammation, such as infection, aging, obesity, atherosclerosis, diabetes, and depression are risk factors for the development of AD. Plasminogen (PLG) is primarily a blood protein synthesized in the liver, which when cleaved into its active form, plasmin (PL), plays roles in fibrinolysis, wound healing, cell signaling, and inflammatory regulation. Here we show that PL in the blood is a regulator of brain inflammatory action and AD pathology. Depletion of PLG in the plasma of an AD mouse model through antisense oligonucleotide technology dramatically improved AD pathology and decreased glial cell activation in the brain, whereas an increase in PL activity through α-2-antiplasmin (A2AP) antisense oligonucleotide treatment exacerbated the brain's immune response and plaque deposition. These studies suggest a crucial role for peripheral PL in mediating neuroimmune cell activation and AD progression and could provide a link to systemic inflammatory risk factors that are known to be associated with AD development.


Assuntos
Doença de Alzheimer/sangue , Encéfalo/metabolismo , Plasminogênio/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Transgênicos , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Plasminogênio/antagonistas & inibidores , Plasminogênio/genética
10.
Haematologica ; 105(5): 1424-1435, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31320552

RESUMO

Sepsis causes an activation of the human contact system, an inflammatory response mechanism against foreign surfaces, proteins and pathogens. The serine proteases of the contact system, factor XII and plasma kallikrein, are decreased in plasma of septic patients, which was previously associated with an unfavorable outcome. However, the precise mechanisms and roles of contact system factors in bacterial sepsis are poorly understood. We, therefore, studied the physiological relevance of factor XII and plasma kallikrein in a mouse model of experimental sepsis. We show that decreased plasma kallikrein concentration in septic mice is a result of reduced mRNA expression plasma prekallikrein gene, indicating that plasma kallikrein belong to negative acute phase proteins. Investigations regarding the pathophysiological function of contact system proteases during sepsis revealed different roles for factor XII and plasma kallikrein. In vitro, factor XII decelerated bacteria induced fibrinolysis, whereas plasma kallikrein supported it. Remarkably, depletion of plasma kallikrein (but not factor XII) by treatment with antisense-oligonucleotides, dampens bacterial dissemination and growth in multiple organs in the mouse sepsis model. These findings identify plasma kallikrein as a novel host pathogenicity factor in Streptococcus pyogenes sepsis.


Assuntos
Sepse , Infecções Estreptocócicas , Animais , Fator XII , Humanos , Camundongos , Peptídeo Hidrolases
11.
Nucleic Acids Res ; 46(7): 3579-3594, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29514240

RESUMO

Chemically modified antisense oligonucleotides (ASOs) with phosphorothioate (PS) linkages have been extensively studied as research and therapeutic agents. PS-ASOs can enter the cell and trigger cleavage of complementary RNA by RNase H1 even in the absence of transfection reagent. A number of cell surface proteins have been identified that bind PS-ASOs and mediate their cellular uptake; however, the mechanisms that lead to productive internalization of PS-ASOs are not well understood. Here, we characterized the interaction between PS-ASOs and epidermal growth factor receptor (EGFR). We found that PS-ASOs trafficked together with EGF and EGFR into clathrin-coated pit structures. Their co-localization was also observed at early endosomes and inside enlarged late endosomes. Reduction of EGFR decreased PS-ASO activity without affecting EGF-mediated signaling pathways and overexpression of EGFR increased PS-ASO activity in cells. Furthermore, reduction of EGFR delays PS-ASO trafficking from early to late endosomes. Thus, EGFR binds to PS-ASOs at the cell surface and mediates essential steps for active (productive) cellular uptake of PS-ASOs through its cargo-dependent trafficking processes which migrate PS-ASOs from early to late endosomes. This EGFR-mediated process can also serve as an additional model to better understand the mechanism of intracellular uptake and endosomal release of PS-ASOs.


Assuntos
Endocitose/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Fosforotioatos/genética , Transporte Biológico/genética , Membrana Celular/química , Membrana Celular/genética , Endossomos/química , Endossomos/genética , Fator de Crescimento Epidérmico/genética , Receptores ErbB/química , Receptores ErbB/genética , Células HeLa , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Fosforotioatos/química , Ligação Proteica , Transdução de Sinais , Transfecção
12.
Glia ; 67(7): 1359-1373, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30882931

RESUMO

The cross-talk between blood proteins, immune cells, and brain function involves complex mechanisms. Plasma protein C1 inhibitor (C1INH) is an inhibitor of vascular inflammation that is induced by activation of the kallikrein-kinin system (KKS) and the complement system. Knockout of C1INH was previously correlated with peripheral vascular permeability via the bradykinin pathway, yet there was no evidence of its correlation with blood-brain barrier (BBB) integrity and brain function. In order to understand the effect of plasma C1INH on brain pathology via the vascular system, we knocked down circulating C1INH in wild-type (WT) mice using an antisense oligonucleotide (ASO), without affecting C1INH expression in peripheral immune cells or the brain, and examined brain pathology. Long-term elimination of endogenous C1INH in the plasma induced the activation of the KKS and peritoneal macrophages but did not activate the complement system. Bradykinin pathway proteins were elevated in the periphery and the brain, resulting in hypotension. BBB permeability, extravasation of plasma proteins into the brain parenchyma, activation of glial cells, and elevation of pro-inflammatory response mediators were detected. Furthermore, infiltrating innate immune cells were observed entering the brain through the lateral ventricle walls and the neurovascular unit. Mice showed normal locomotion function, yet cognition was impaired and depressive-like behavior was evident. In conclusion, our results highlight the important role of regulated plasma C1INH as it acts as a gatekeeper to the brain via the neurovascular system. Thus, manipulation of C1INH in neurovascular disorders might be therapeutically beneficial.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Permeabilidade Capilar/fisiologia , Proteína Inibidora do Complemento C1/metabolismo , Locomoção/fisiologia , Neuroglia/metabolismo , Animais , Encéfalo/irrigação sanguínea , Proteína Inibidora do Complemento C1/genética , Feminino , Técnicas de Silenciamento de Genes/métodos , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL
13.
Am J Physiol Lung Cell Mol Physiol ; 316(1): L187-L196, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358441

RESUMO

High-molecular-weight kininogen is an important substrate of the kallikrein-kinin system. Activation of this system has been associated with aggravation of hallmark features in asthma. We aimed to determine the role of kininogen in enhanced pause (Penh) measurements and lung inflammation in a house dust mite (HDM)-induced murine asthma model. Normal wild-type mice and mice with a genetic deficiency of kininogen were subjected to repeated HDM exposure (sensitization on days 0, 1, and 2; challenge on days 14, 15, 18, and 19) via the airways to induce allergic lung inflammation. Alternatively, kininogen was depleted after HDM sensitization by twice-weekly injections of a specific antisense oligonucleotide (kininogen ASO) starting at day 3. In kininogen-deficient mice HDM induced in Penh was completely prevented. Remarkably, kininogen deficiency did not modify HDM-induced eosinophil/neutrophil influx, T helper 2 responses, mucus production, or lung pathology. kininogen ASO treatment started after HDM sensitization reduced plasma kininogen levels by 75% and reproduced the phenotype of kininogen deficiency: kininogen ASO administration prevented the HDM-induced increase in Penh without influencing leukocyte influx, Th2 responses, mucus production, or lung pathology. This study suggests that kininogen could contribute to HDM-induced rise in Penh independently of allergic lung inflammation. Further research is warranted to confirm these data using invasive measurements of airway responsiveness.


Assuntos
Asma/imunologia , Cininogênios/deficiência , Pulmão/imunologia , Pyroglyphidae/imunologia , Células Th2/imunologia , Animais , Asma/genética , Asma/patologia , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/patologia , Cininogênios/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células Th2/patologia
14.
Blood ; 129(18): 2547-2556, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28242605

RESUMO

Vascular abnormalities and inflammation are found in many Alzheimer disease (AD) patients, but whether these changes play a causative role in AD is not clear. The factor XII (FXII) -initiated contact system can trigger both vascular pathology and inflammation and is activated in AD patients and AD mice. We have investigated the role of the contact system in AD pathogenesis. Cleavage of high-molecular-weight kininogen (HK), a marker for activation of the inflammatory arm of the contact system, is increased in a mouse model of AD, and this cleavage is temporally correlated with the onset of brain inflammation. Depletion of FXII in AD mice inhibited HK cleavage in plasma and reduced neuroinflammation, fibrinogen deposition, and neurodegeneration in the brain. Moreover, FXII-depleted AD mice showed better cognitive function than untreated AD mice. These results indicate that FXII-mediated contact system activation contributes to AD pathogenesis, and therefore this system may offer novel targets for AD treatment.


Assuntos
Doença de Alzheimer , Encéfalo , Disfunção Cognitiva , Fator XII/metabolismo , Doenças Vasculares , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/sangue , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Cininogênio de Alto Peso Molecular/sangue , Camundongos , Camundongos Transgênicos , Doenças Vasculares/sangue , Doenças Vasculares/genética , Doenças Vasculares/patologia , Doenças Vasculares/fisiopatologia
15.
Nucleic Acids Res ; 45(21): 12388-12400, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069408

RESUMO

Antisense oligonucleotide (ASO) therapeutics show tremendous promise for the treatment of previously intractable human diseases but to exert their effects on cellular RNA processing they must first cross the plasma membrane by endocytosis. The conjugation of ASOs to a receptor ligand can dramatically increase their entry into certain cells and tissues, as demonstrated by the implementation of N-acetylgalactosamine (GalNAc)-conjugated ASOs for Asialoglycoprotein Receptor (ASGR)-mediated uptake into liver hepatocytes. We compared the internalization and activity of GalNAc-conjugated ASOs and their parents in endogenous ASGR-expressing cells and were able to recapitulate hepatocyte ASO uptake and activity in cells engineered to heterologously express the receptor. We found that the minor receptor subunit, ASGR2, is not required for effective in vitro or in vivo uptake of GalNAc-conjugated ASO and that the major subunit, ASGR1, plays a small but significant role in the uptake of unconjugated phosphorothioate ASOs into hepatocytes. Moreover, our data demonstrates there is a large excess capacity of liver ASGR for the effective uptake of GalNAc-ASO conjugates, suggesting broad opportunities to exploit receptors with relatively moderate levels of expression.


Assuntos
Acetilgalactosamina , Receptor de Asialoglicoproteína/metabolismo , Hepatócitos/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Fosforotioatos/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Fosforotioatos/química
16.
Am J Physiol Lung Cell Mol Physiol ; 314(3): L397-L405, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29122754

RESUMO

High-molecular-weight kininogen (HK), together with factor XI, factor XII and prekallikrein, is part of the contact system that has proinflammatory, prothrombotic, and vasoactive properties. We hypothesized that HK plays a role in the host response during pneumonia-derived sepsis. To this end mice were depleted of kininogen (KNG) to plasma HK levels of 28% of normal by repeated treatment with a specific antisense oligonucleotide (KNG ASO) for 3 wk before infection with the common human sepsis pathogen Klebsiella pneumoniae via the airways. Whereas plasma HK levels increased during infection in mice treated with a scrambled control ASO (Ctrl ASO), HK level in the KNG ASO-treated group remained reduced to 25-30% of that in the corresponding Ctrl ASO group both before and after infection. KNG depletion did not influence bacterial growth in lungs or dissemination to distant body sites. KNG depletion was associated with lower lung CXC chemokine and myeloperoxidase levels but did not impact neutrophil influx, lung pathology, activation of the vascular endothelium, activation of the coagulation system, or the extent of distant organ injury. These results were corroborated by studies in mice with a genetic deficiency of KNG, which were indistinguishable from wild-type mice during Klebsiella-induced sepsis. Both KNG depletion and KNG deficiency were associated with strongly reduced plasma prekallikrein levels, indicating the carrier function of HK for this zymogen. This study suggests that KNG does not significantly contribute to the host defense during gram-negative pneumonia-derived sepsis.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Cininogênios/fisiologia , Infecções por Klebsiella/complicações , Klebsiella pneumoniae/imunologia , Pneumonia Bacteriana/complicações , Sepse/imunologia , Animais , Coagulação Sanguínea , Fator XII/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Infecções por Klebsiella/microbiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Pneumonia Bacteriana/microbiologia , Sepse/etiologia , Sepse/patologia
17.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L799-L809, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30136609

RESUMO

Pneumonia is the most frequent cause of sepsis, and Klebsiella pneumoniae is a common pathogen in pneumonia and sepsis. Infection is associated with activation of the coagulation system. Coagulation can be activated by the extrinsic and intrinsic routes, mediated by factor VII (FVII) and factor XII (FXII), respectively. To determine the role of FVII and FXII in the host response during pneumonia-derived sepsis, mice were treated with specific antisense oligonucleotide (ASO) directed at FVII or FXII for 3 wk before infection with K. pneumoniae via the airways. FVII ASO treatment strongly inhibited hepatic FVII mRNA expression, reduced plasma FVII to ~25% of control, and selectively prolonged the prothrombin time. FXII ASO treatment strongly suppressed hepatic FXII mRNA expression, reduced plasma FXII to ~20% of control, and selectively prolonged the activated partial thromboplastin time. Lungs also expressed FVII mRNA, which was not altered by FVII ASO administration. Very low FXII mRNA levels were detected in lungs, which were not modified by FXII ASO treatment. FVII ASO attenuated systemic activation of coagulation but did not influence fibrin deposition in lung tissue. FVII ASO enhanced bacterial loads in lungs and mitigated sepsis-induced distant organ injury. FXII inhibition did not affect any of the host response parameters measured. These results suggest that partial inhibition of FVII, but not of FXII, modifies the host response to gram-negative pneumonia-derived sepsis.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Pneumonia Bacteriana/tratamento farmacológico , Sepse/tratamento farmacológico , Animais , Fator XII/metabolismo , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/metabolismo , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , RNA Mensageiro/metabolismo , Sepse/metabolismo
18.
Blood ; 123(13): 2102-7, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24501216

RESUMO

Central venous catheter thrombosis can cause venous obstruction and pulmonary embolism. To determine the extent to which catheter thrombosis is triggered by the contact or extrinsic pathway of coagulation, we used antisense oligonucleotides (ASOs) to selectively knock down factor (f)XII, fXI, or high-molecular-weight kininogen (HK), key components of the contact pathway, or fVII, which is essential for the extrinsic pathway. Knockdown of contact pathway components prolonged the activated partial thromboplastin time and decreased target protein activity levels by over 90%, whereas fVII knockdown prolonged the prothrombin time and reduced fVII activity to a similar extent. Using a rabbit model of catheter thrombosis, catheters implanted in the jugular vein were assessed daily until they occluded, up to a maximum of 35 days. Compared with control, fXII and fXI ASO treatment prolonged the time to catheter occlusion by 2.2- and 2.3-fold, respectively. In contrast, both HK and fVII knockdown did not significantly prolong the time to occlusion, and dual treatment with fVII- and fXI-directed ASOs produced a time to occlusion similar to that with the fXI ASO alone. These findings suggest that catheter thrombosis is triggered via the contact pathway and identify fXII and fXI as potential targets to attenuate this complication.


Assuntos
Catéteres/efeitos adversos , Fator XII/genética , Fator XI/genética , Oligonucleotídeos Antissenso/farmacologia , Interferência de RNA/fisiologia , Trombose/prevenção & controle , Animais , Obstrução do Cateter , Modelos Animais de Doenças , Fator XI/antagonistas & inibidores , Fator XII/antagonistas & inibidores , Regulação da Expressão Gênica/efeitos dos fármacos , Terapia Genética/métodos , Masculino , Coelhos , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/genética , Trombose/genética
19.
Arterioscler Thromb Vasc Biol ; 33(7): 1670-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23559626

RESUMO

OBJECTIVE: During coagulation, factor IX (FIX) is activated by 2 distinct mechanisms mediated by the active proteases of either FVIIa or FXIa. Both coagulation factors may contribute to thrombosis; FXI, however, plays only a limited role in the arrest of bleeding. Therefore, therapeutic targeting of FXI may produce an antithrombotic effect with relatively low hemostatic risk. APPROACH AND RESULTS: We have reported that reducing FXI levels with FXI antisense oligonucleotides produces antithrombotic activity in mice, and that administration of FXI antisense oligonucleotides to primates decreases circulating FXI levels and activity in a dose-dependent and time-dependent manner. Here, we evaluated the relationship between FXI plasma levels and thrombogenicity in an established baboon model of thrombosis and hemostasis. In previous studies with this model, antibody-induced inhibition of FXI produced potent antithrombotic effects. In the present article, antisense oligonucleotides-mediated reduction of FXI plasma levels by ≥ 50% resulted in a demonstrable and sustained antithrombotic effect without an increased risk of bleeding. CONCLUSIONS: These results indicate that reducing FXI levels using antisense oligonucleotides is a promising alternative to direct FXI inhibition, and that targeting FXI may be potentially safer than conventional antithrombotic therapies that can markedly impair primary hemostasis.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Fator XI/metabolismo , Fibrinolíticos/administração & dosagem , Oligonucleotídeos Antissenso/administração & dosagem , Trombose/prevenção & controle , Animais , Anticorpos Monoclonais/administração & dosagem , Derivação Arteriovenosa Cirúrgica , Tempo de Sangramento , Colágeno , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação para Baixo , Fator XI/antagonistas & inibidores , Fator XI/genética , Fibrinolíticos/toxicidade , Hemorragia/induzido quimicamente , Macaca fascicularis , Oligonucleotídeos Antissenso/toxicidade , Papio , Trombina/metabolismo , Trombose/sangue , Trombose/etiologia , Trombose/genética , Fatores de Tempo
20.
J Allergy Clin Immunol Pract ; 12(4): 911-918, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38142864

RESUMO

Hereditary angioedema (HAE) is typically caused by a deficiency of the protease inhibitor C1 inhibitor (C1INH). The absence of C1INH activity on plasma kallikrein and factor XIIa leads to overproduction of the vasoactive peptide bradykinin, with resulting angioedema. As the primary site of C1INH and prekallikrein production, the liver is recognized as an important therapeutic target in HAE, leading to the development of hepatic-focused treatment strategies such as GalNAc-conjugated antisense technology and gene modification. This report reviews currently available data on hepatic-focused interventions for HAE that have advanced into human trials. Donidalorsen is an investigational GalNAc3-conjugated antisense oligonucleotide that binds to prekallikrein mRNA in the liver and reduces the expression of prekallikrein. Phase 2 data with subcutaneous donidalorsen demonstrated a significant reduction in HAE attack rate compared with placebo. Phase 3 trials are underway. ADX-324 is a GalNAc3-conjugated short-interfering RNA being investigated in HAE. BMN 331 is an investigational AAV5-based gene therapy vector that expresses wild-type human C1INH and is targeted to hepatocytes. A single intravenous dose of BMN 331 is intended to replace the defective SERPING1 gene and enable patients to produce functional C1INH. A first-in-human phase 1/2 study is ongoing with BMN 331. NTLA-2002 is an investigational in vivo clustered regularly interspaced short palindromic repeats/Cas9-based therapy designed to knock out the prekallikrein-coding KLKB1 gene in hepatocytes; a phase 1/2 study is ongoing. Findings from these and other ongoing studies are highly anticipated with the expectation of expanding the array of treatment options in HAE.


Assuntos
Angioedemas Hereditários , Humanos , Angioedemas Hereditários/genética , Angioedemas Hereditários/prevenção & controle , Bradicinina/uso terapêutico , Bradicinina/metabolismo , Proteína Inibidora do Complemento C1/uso terapêutico , Fígado/metabolismo , Pré-Calicreína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA