Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Phys Rev Lett ; 130(5): 050801, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800447

RESUMO

We study the implementation of arbitrary excitation-conserving linear transformations between two sets of N stationary bosonic modes, which are connected through a photonic quantum channel. By controlling the individual couplings between the modes and the channel, an initial N-partite quantum state in register A can be released as a multiphoton wave packet and, successively, be reabsorbed in register B. Here we prove that there exists a set of control pulses that implement this transfer with arbitrarily high fidelity and, simultaneously, realize a prespecified N×N unitary transformation between the two sets of modes. Moreover, we provide a numerical algorithm for constructing these control pulses and discuss the scaling and robustness of this protocol in terms of several illustrative examples. By being purely control-based and not relying on any adaptations of the underlying hardware, the presented scheme is extremely flexible and can find widespread applications, for example, for boson-sampling experiments, multiqubit state transfer protocols, or in continuous-variable quantum computing architectures.

2.
Phys Rev Lett ; 130(5): 050601, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36800450

RESUMO

In this Letter, we provide analytical and numerical evidence that the single-layer quantum approximate optimization algorithm on universal Ising spin models produces thermal-like states. We find that these pseudo-Boltzmann states can not be efficiently simulated on classical computers according to the general state-of-the-art condition that ensures rapid mixing for Ising models. Moreover, we observe that the temperature depends on a hidden universal correlation between the energy of a state and the covariance of other energy levels and the Hamming distances of the state to those energies.

3.
Proc Natl Acad Sci U S A ; 116(50): 25333-25342, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31757847

RESUMO

Fruit have evolved a sophisticated tissue and cellular architecture to secure plant reproductive success. Postfertilization growth is perhaps the most dramatic event during fruit morphogenesis. Several studies have proposed that fertilized ovules and developing seeds initiate signaling cascades to coordinate and promote the growth of the accompanying fruit tissues. This dynamic process allows the fruit to conspicuously increase its size and acquire its final shape and means for seed dispersal. All these features are key for plant survival and crop yield. Despite its importance, we lack a high-resolution spatiotemporal map of how postfertilization fruit growth proceeds at the cellular level. In this study, we have combined live imaging, mutant backgrounds in which fertilization can be controlled, and computational modeling to monitor and predict postfertilization fruit growth in Arabidopsis We have uncovered that, unlike leaves, sepals, or roots, fruit do not exhibit a spatial separation of cell division and expansion domains; instead, there is a separation into temporal stages with fertilization as the trigger for transitioning to cell expansion, which drives postfertilization fruit growth. We quantified the coordination between fertilization and fruit growth by imaging no transmitting tract (ntt) mutants, in which fertilization fails in the bottom half of the fruit. By combining our experimental data with computational modeling, we delineated the mobility properties of the seed-derived signaling cascades promoting growth in the fruit. Our study provides the basis for generating a comprehensive understanding of the molecular and cellular mechanisms governing fruit growth and shape.


Assuntos
Arabidopsis/citologia , Frutas/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Divisão Celular , Fertilização , Frutas/citologia , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Sementes/citologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
4.
Development ; 145(13)2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29914969

RESUMO

Ovule formation is a complex developmental process in plants, with a strong impact on the production of seeds. Ovule primordia initiation is controlled by a gene network, including components of the signaling pathways of auxin, brassinosteroids and cytokinins. By contrast, gibberellins (GAs) and DELLA proteins, the negative regulators of GA signaling, have never been shown to be involved in ovule initiation. Here, we provide molecular and genetic evidence that points to DELLA proteins as novel players in the determination of ovule number in Arabidopsis and in species of agronomic interest, such as tomato and rapeseed, adding a new layer of complexity to this important developmental process. DELLA activity correlates positively with ovule number, acting as a positive factor for ovule initiation. In addition, ectopic expression of a dominant DELLA in the placenta is sufficient to increase ovule number. The role of DELLA proteins in ovule number does not appear to be related to auxin transport or signaling in the ovule primordia. Possible crosstalk between DELLA proteins and the molecular and hormonal network controlling ovule initiation is also discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Giberelinas/metabolismo , Óvulo Vegetal/embriologia , Arabidopsis/citologia , Óvulo Vegetal/citologia
5.
Phys Rev Lett ; 126(2): 023603, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512234

RESUMO

Coherent photon-emitter interfaces offer a way to mediate efficient nonlinear photon-photon interactions, much needed for quantum information processing. Here we experimentally study the case of a two-level emitter, a quantum dot, coupled to a single optical mode in a nanophotonic waveguide. We carry out few-photon transport experiments and record the statistics of the light to reconstruct the scattering matrix elements of one- and two-photon components. This provides direct insight to the complex nonlinear photon interaction that contains rich many-body physics.

6.
PLoS Genet ; 14(1): e1007182, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29329291

RESUMO

Ovules are fundamental for plant reproduction and crop yield as they are the precursors of seeds. Therefore, ovule specification is a critical developmental program. In Arabidopsis thaliana, ovule identity is redundantly conferred by the homeotic D-class genes SHATTERPROOF1 (SHP1), SHP2 and SEEDSTICK (STK), phylogenetically related to the MADS-domain regulatory gene AGAMOUS (AG), essential in floral organ specification. Previous studies have shown that the HUA-PEP activity, comprised of a suite of RNA-binding protein (RBP) encoding genes, regulates AG pre-mRNA processing and thus flower patterning and organ identity. Here, we report that the HUA-PEP activity additionally governs ovule morphogenesis. Accordingly, in severe hua-pep backgrounds ovules transform into flower organ-like structures. These homeotic transformations are most likely due to the dramatic reduction in SHP1, SHP2 and STK activity. Our molecular and genome-wide profiling strategies revealed the accumulation of prematurely terminated transcripts of D-class genes in hua-pep mutants and reduced amounts of their respective functional messengers, which points to pre-mRNA processing misregulation as the origin of the ovule developmental defects in such backgrounds. RNA processing and transcription are coordinated by the RNA polymerase II (RNAPII) carboxyl-terminal domain (CTD). Our results show that HUA-PEP activity members can interact with the CTD regulator C-TERMINAL DOMAIN PHOSPHATASE-LIKE1 (CPL1), supporting a co-transcriptional mode of action for the HUA-PEP activity. Our findings expand the portfolio of reproductive developmental programs in which HUA-PEP activity participates, and further substantiates the importance of RNA regulatory mechanisms (pre-mRNA co-transcriptional regulation) for correct gene expression during plant morphogenesis.


Assuntos
Arabidopsis , Diferenciação Celular/genética , Óvulo Vegetal/fisiologia , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Arabidopsis/embriologia , Arabidopsis/genética , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Morfogênese/genética , Óvulo Vegetal/embriologia , Plantas Geneticamente Modificadas , Proteínas de Ligação a RNA/genética , Fatores de Transcrição/genética
7.
New Phytol ; 227(4): 1222-1234, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32259283

RESUMO

Ovules are essential for sexual plant reproduction and seed formation, and are fundamental for agriculture. However, our understanding of the molecular mechanisms governing ovule development is far from complete. In Arabidopsis, ovule identity is determined by homeotic MADS-domain proteins that define the floral C- (AG) and D- (SHP1/SHP2, STK) functions. Pre-mRNA processing of these genes is critical and mediated by HUA-PEP activity, composed of genes encoding RNA-binding proteins. In strong hua-pep mutants, functional transcripts for C- and D-function genes are reduced, resulting in homeotic transformation of ovules. Thus, hua-pep mutants provide an unique sensitized background to study ovule morphogenesis when C- and D-functions are simultaneously compromised. We found that hua-pep ovules are morphologically sepaloid and show ectopic expression of the homeotic class-A gene AP1. Inactivation of AP1 or AP2 (A-function genes) in hua-pep mutants reduced homeotic conversions, rescuing ovule identity while promoting carpelloid traits in transformed ovules. Interestingly, increased AG dosage led to similar results. Our findings strongly suggest that HUA-PEP activity is required for correct C and D floral functions, which in turn prevents ectopic expression of class-A genes in ovules for their proper morphogenesis, evoking the classic A-C antagonism of the ABC model for floral organ development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dissecação , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Proteínas de Plantas/genética
8.
Proc Natl Acad Sci U S A ; 114(9): 2419-2424, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28202720

RESUMO

Plants have evolved adaptive strategies that involve transcriptional networks to cope with and survive environmental challenges. Key transcriptional regulators that mediate responses to environmental fluctuations in nitrate have been identified; however, little is known about how these regulators interact to orchestrate nitrogen (N) responses and cell-cycle regulation. Here we report that teosinte branched1/cycloidea/proliferating cell factor1-20 (TCP20) and NIN-like protein (NLP) transcription factors NLP6 and NLP7, which act as activators of nitrate assimilatory genes, bind to adjacent sites in the upstream promoter region of the nitrate reductase gene, NIA1, and physically interact under continuous nitrate and N-starvation conditions. Regions of these proteins necessary for these interactions were found to include the type I/II Phox and Bem1p (PB1) domains of NLP6&7, a protein-interaction module conserved in animals for nutrient signaling, and the histidine- and glutamine-rich domain of TCP20, which is conserved across plant species. Under N starvation, TCP20-NLP6&7 heterodimers accumulate in the nucleus, and this coincides with TCP20 and NLP6&7-dependent up-regulation of nitrate assimilation and signaling genes and down-regulation of the G2/M cell-cycle marker gene, CYCB1;1 TCP20 and NLP6&7 also support root meristem growth under N starvation. These findings provide insights into how plants coordinate responses to nitrate availability, linking nitrate assimilation and signaling with cell-cycle progression.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Ciclina B/genética , Ciclina B/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Regulação da Expressão Gênica no Desenvolvimento , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Nitratos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fatores de Transcrição/metabolismo , Transcrição Gênica
9.
PLoS Genet ; 13(4): e1006726, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28388635

RESUMO

Fruits and seeds are the major food source on earth. Both derive from the gynoecium and, therefore, it is crucial to understand the mechanisms that guide the development of this organ of angiosperm species. In Arabidopsis, the gynoecium is composed of two congenitally fused carpels, where two domains: medial and lateral, can be distinguished. The medial domain includes the carpel margin meristem (CMM) that is key for the production of the internal tissues involved in fertilization, such as septum, ovules, and transmitting tract. Interestingly, the medial domain shows a high cytokinin signaling output, in contrast to the lateral domain, where it is hardly detected. While it is known that cytokinin provides meristematic properties, understanding on the mechanisms that underlie the cytokinin signaling pattern in the young gynoecium is lacking. Moreover, in other tissues, the cytokinin pathway is often connected to the auxin pathway, but we also lack knowledge about these connections in the young gynoecium. Our results reveal that cytokinin signaling, that can provide meristematic properties required for CMM activity and growth, is enabled by the transcription factor SPATULA (SPT) in the medial domain. Meanwhile, cytokinin signaling is confined to the medial domain by the cytokinin response repressor ARABIDOPSIS HISTIDINE PHOSPHOTRANSFERASE 6 (AHP6), and perhaps by ARR16 (a type-A ARR) as well, both present in the lateral domains (presumptive valves) of the developing gynoecia. Moreover, SPT and cytokinin, probably together, promote the expression of the auxin biosynthetic gene TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1) and the gene encoding the auxin efflux transporter PIN-FORMED 3 (PIN3), likely creating auxin drainage important for gynoecium growth. This study provides novel insights in the spatiotemporal determination of the cytokinin signaling pattern and its connection to the auxin pathway in the young gynoecium.


Assuntos
Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Citocininas/metabolismo , Meristema/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Meristema/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Transdução de Sinais , Triptofano Transaminase/genética
10.
New Phytol ; 217(2): 813-827, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29105090

RESUMO

Root knot nematodes (RKNs) penetrate into the root vascular cylinder, triggering morphogenetic changes to induce galls, de novo formed 'pseudo-organs' containing several giant cells (GCs). Distinctive gene repression events observed in early gall/GCs development are thought to be mediated by post-transcriptional silencing via microRNAs (miRNAs), a process that is far from being fully characterized. Arabidopsis thaliana backgrounds with altered activities based on target 35S::MIMICRY172 (MIM172), 35S::TARGET OF EARLY ACTIVATION TAGGED 1 (TOE1)-miR172-resistant (35S::TOE1R ) and mutant (flowering locus T-10 (ft-10)) lines were used for functional analysis of nematode infective and reproductive parameters. The GUS-reporter lines, MIR172A-E::GUS, treated with auxin (IAA) and an auxin-inhibitor (a-(phenyl ethyl-2-one)-indole-3-acetic acid (PEO-IAA)), together with the MIR172C AuxRE::GUS line with two mutated auxin responsive elements (AuxREs), were assayed for nematode-dependent gene expression. Arabidopsis thaliana backgrounds with altered expression of miRNA172, TOE1 or FT showed lower susceptibility to the RKNs and smaller galls and GCs. MIR172C-D::GUS showed restricted promoter activity in galls/GCs that was regulated by auxins through auxin-responsive factors. IAA induced their activity in galls while PEO-IAA treatment and mutations in AuxRe motifs abolished it. The results showed that the regulatory module miRNA172/TOE1/FT plays an important role in correct GCs and gall development, where miRNA172 is modulated by auxins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/parasitologia , Comportamento Alimentar , Redes Reguladoras de Genes , MicroRNAs/metabolismo , Tylenchoidea/fisiologia , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Sequência de Bases , Produtos Agrícolas/genética , Produtos Agrícolas/parasitologia , Progressão da Doença , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Células Gigantes/metabolismo , Células Gigantes/parasitologia , Glucuronidase/metabolismo , Ácidos Indolacéticos/farmacologia , MicroRNAs/genética , Modelos Biológicos , Doenças das Plantas/parasitologia , Tumores de Planta/parasitologia , Regiões Promotoras Genéticas/genética , Tylenchoidea/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
11.
Phys Rev Lett ; 120(15): 153602, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29756880

RESUMO

We study the scattering of individual photons by a two-level system ultrastrongly coupled to a waveguide. The scattering is elastic for a broad range of couplings and can be described with an effective U(1)-symmetric Hamiltonian. This simple model allows the prediction of scattering resonance line shapes, validated up to α=0.3, and close to the Toulouse point α=1/2, where inelastic scattering becomes relevant. Our predictions model experiments with superconducting circuits [P. Forn-Díaz et al., Nat. Phys. 13, 39 (2017)NPAHAX1745-247310.1038/nphys3905] and can be extended to study multiphoton scattering.

12.
PLoS Genet ; 11(2): e1004983, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25658099

RESUMO

Post-transcriptional control is nowadays considered a main checking point for correct gene regulation during development, and RNA binding proteins actively participate in this process. Arabidopsis thaliana FLOWERING LOCUS WITH KH DOMAINS (FLK) and PEPPER (PEP) genes encode RNA-binding proteins that contain three K-homology (KH)-domain, the typical configuration of Poly(C)-binding ribonucleoproteins (PCBPs). We previously demonstrated that FLK and PEP interact to regulate FLOWERING LOCUS C (FLC), a central repressor of flowering time. Now we show that FLK and PEP also play an important role in the maintenance of the C-function during floral organ identity by post-transcriptionally regulating the MADS-box floral homeotic gene AGAMOUS (AG). Previous studies have indicated that the KH-domain containing protein HEN4, in concert with the CCCH-type RNA binding protein HUA1 and the RPR-type protein HUA2, facilitates maturation of the AG pre-mRNA. In this report we show that FLK and PEP genetically interact with HEN4, HUA1, and HUA2, and that the FLK and PEP proteins physically associate with HUA1 and HEN4. Taken together, these data suggest that HUA1, HEN4, PEP and FLK are components of the same post-transcriptional regulatory module that ensures normal processing of the AG pre-mRNA. Our data better delineates the roles of PEP in plant development and, for the first time, links FLK to a morphogenetic process.


Assuntos
Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/genética , Proteínas de Domínio MADS/genética , Proteínas de Ligação a RNA/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/biossíntese , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/biossíntese , Microscopia Eletrônica de Varredura , Morfogênese , Fenótipo , Proteínas de Ligação a RNA/biossíntese , Reprodução/genética
13.
New Phytol ; 213(1): 250-263, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27513887

RESUMO

Several physiological functions have been attributed to class III peroxidases (PRXs) in plants, but the in planta role of most members of this family still remains undetermined. Here, we report the first functional characterization of PRX17 (At2g22420), one of the 73 members of this family in Arabidopsis thaliana. Localization of PRX17 was examined by transient expression in Nicotiana benthamiana. Loss- and gain-of-function mutants in A. thaliana were studied. Regulation at the gene and protein levels was analyzed using ß-glucuronidase (GUS) activity, quantitative reverse transcriptase (qRT)-PCR, zymography, and chromatin immunoprecipitation. Phenotypes were characterized including lignin and xylan contents. PRX17 was expressed in various tissues, including vascular tissues, and PRX17 was localized to the cell wall. In prx17, the lignin content was reduced in the stem and siliques and bolting was delayed, while the opposite phenotype was observed in 35S:PRX17 plants, together with a significant increase of lignin and xylan immunofluorescence signal. Finally, we demonstrated that the transcription factor AGAMOUS-LIKE15 (AGL15) binds to the PRX17 promoter and regulates PRX17 expression level. This converging set of structural, transcriptomic and physiological data suggests that PRX17, under the control of AGL15, contributes to developmental programs by playing an essential role in regulating age-dependent lignified tissue formation, including changes in cell wall properties.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Parede Celular/metabolismo , Lignina/metabolismo , Proteínas de Domínio MADS/metabolismo , Peroxidase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sequência de Bases , DNA Bacteriano/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Domínio MADS/genética , Mutação/genética , Peroxidases , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo
14.
Phys Rev Lett ; 119(15): 153601, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29077426

RESUMO

In this work we develop an experimental procedure to interrogate the single- and multiphoton scattering matrices of an unknown quantum system interacting with propagating photons. Our proposal requires coherent state laser or microwave inputs and homodyne detection at the scatterer's output, and provides simultaneous information about multiple-elastic and inelastic-segments of the scattering matrix. The method is resilient to detector noise and its errors can be made arbitrarily small by combining experiments at various laser powers. Finally, we show that the tomography of scattering has to be performed using pulsed lasers to efficiently gather information about the nonlinear processes in the scatterer.

15.
PLoS Genet ; 8(11): e1003020, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133401

RESUMO

The Arabidopsis fruit mainly consists of a mature ovary that shows three well defined territories that are pattern elements along the mediolateral axis: the replum, located at the medial plane of the flower, and the valve and the valve margin, both of lateral nature. JAG/FIL activity, which includes the combined functions of JAGGED (JAG), FILAMENTOUS FLOWER (FIL), and YABBY3 (YAB3), contributes to the formation of the two lateral pattern elements, whereas the cooperating genes BREVIPEDICELLUS (BP) and REPLUMLESS (RPL) promote replum development. A recent model to explain pattern formation along the mediolateral axis hypothesizes that JAG/FIL activity and BP/RPL function as antagonistic lateral and medial factors, respectively, which tend to repress each other. In this work, we demonstrate the existence of mutual exclusion mechanisms between both kinds of factors, and how this determines the formation and size of the three territories. Medial factors autonomously constrain lateral factors so that they only express outside the replum, and lateral factors negatively regulate the medially expressed BP gene in a non-autonomous fashion to ensure correct replum development. We also have found that ASYMMETRIC LEAVES1 (AS1), previously shown to repress BP both in leaves and ovaries, collaborates with JAG/FIL activity, preventing its repression by BP and showing synergistic interactions with JAG/FIL activity genes. Therefore AS gene function (the function of the interacting genes AS1 and AS2) has been incorporated in the model as a new lateral factor. Our model of antagonistic factors provides explanation for mutant fruit phenotypes in Arabidopsis and also may help to understand natural variation of fruit shape in Brassicaceae and other species, since subtle changes in gene expression may cause conspicuous changes in the size of the different tissue types.


Assuntos
Arabidopsis , Frutas , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Mutação , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Plant J ; 73(1): 37-49, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22946675

RESUMO

The Arabidopsis fruit forms a seedpod that develops from the fertilized gynoecium. It is mainly comprised of an ovary in which three distinct tissues can be differentiated: the valves, the valve margins and the replum. Separation of cells at the valve margin allows for the valves to detach from the replum and thus dispersal of the seeds. Valves and valve margins are located in lateral positions whereas the replum is positioned medially and retains meristematic properties resembling the shoot apical meristem (SAM). Members of the WUSCHEL-related homeobox family have been involved in stem cell maintenance in the SAM, and within this family, we found that WOX13 is expressed mainly in meristematic tissues including the replum. We also show that wox13 loss-of-function mutations reduce replum size and enhance the phenotypes of mutants affected in the replum identity gene RPL. Conversely, misexpression of WOX13 produces, independently from BP and RPL, an oversized replum and valve defects that closely resemble those of mutants in JAG/FIL activity genes. Our results suggest that WOX13 promotes replum development by likely preventing the activity of the JAG/FIL genes in medial tissues. This regulation seems to play a role in establishing the gradient of JAG/FIL activity along the medio-lateral axis of the fruit critical for proper patterning. Our data have allowed us to incorporate the role of WOX13 into the regulatory network that orchestrates fruit patterning.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Genes Homeobox/fisiologia , Genes de Plantas/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Frutas/genética , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes Homeobox/genética , Genes de Plantas/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Meristema/genética , Meristema/fisiologia
17.
Development ; 138(23): 5167-76, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22031547

RESUMO

The majority of the Arabidopsis fruit comprises an ovary with three primary tissue types: the valves, the replum and the valve margins. The valves, which are derived from the ovary walls, are separated along their entire length by the replum. The valve margin, which consists of a separation layer and a lignified layer, forms as a narrow stripe of cells at the valve-replum boundaries. The valve margin identity genes are expressed at the valve-replum boundary and are negatively regulated by FUL and RPL in the valves and replum, respectively. In ful rpl double mutants, the valve margin identity genes become ectopically expressed, and, as a result, the entire outer surface of the ovary takes on valve margin identity. We carried out a genetic screen in this sensitized genetic background and identified a suppressor mutation that restored replum development. Surprisingly, we found that the corresponding suppressor gene was AP2, a gene that is well known for its role in floral organ identity, but whose role in Arabidopsis fruit development had not been previously described. We found that AP2 acts to prevent replum overgrowth by negatively regulating BP and RPL, two genes that normally act to promote replum formation. We also determined that AP2 acts to prevent overgrowth of the valve margin by repressing valve margin identity gene expression. We have incorporated AP2 into the current genetic network controlling fruit development in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/metabolismo , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/citologia , Frutas/anatomia & histologia , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Homeodomínio/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Mutagênese , Reação em Cadeia da Polimerase em Tempo Real
18.
Phys Rev Lett ; 113(19): 193601, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25415906

RESUMO

We show how a pair of superconducting qubits coupled to a microwave cavity mode can be used to engineer a single-atom laser that emits light into a nonclassical state. Our scheme relies on the dressing of the qubit-field coupling by periodic modulations of the qubit energy. In the dressed basis, the radiative decay of the first qubit becomes an effective incoherent pumping mechanism that injects energy into the system, hence turning dissipation to our advantage. A second, auxiliary qubit is used to shape the decay within the cavity, in such a way that lasing occurs in a squeezed basis of the cavity mode. We characterize the system both by mean-field theory and exact calculations. Our work may find applications in the generation of squeezing and entanglement in circuit QED, as well as in the study of dissipative few- and many-body phase transitions.

19.
Phys Rev Lett ; 112(7): 073603, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579598

RESUMO

From the interaction between a frequency comb and an atomic qubit, we derive quantum protocols for the determination of the carrier-envelope offset phase, using the qubit coherence as a reference, and without the need of frequency doubling or an octave spanning comb. Compared with a trivial interference protocol, the multipulse protocol results in a polynomial enhancement of the sensitivity O(N-2) with the number N of laser pulses involved. We specialize the protocols using optical or hyperfine qubits, Λ schemes, and Raman transitions, and introduce methods where the reference is another phase-stable cw laser or frequency comb.

20.
Phys Rev Lett ; 112(18): 180405, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24856680

RESUMO

We introduce a model of quantum magnetism induced by the nonperturbative exchange of microwave photons between distant superconducting qubits. By interconnecting qubits and cavities, we obtain a spin-boson lattice model that exhibits a quantum phase transition where both qubits and cavities spontaneously polarize. We present a many-body ansatz that captures this phenomenon all the way, from a the perturbative dispersive regime where photons can be traced out, to the nonperturbative ultrastrong coupling regime where photons must be treated on the same footing as qubits. Our ansatz also reproduces the low-energy excitations, which are described by hybridized spin-photon quasiparticles, and can be probed spectroscopically from transmission experiments in circuit QED, as shown by simulating a possible experiment by matrix-product-state methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA