Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Neurooncol ; 131(3): 437-448, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27858266

RESUMO

In the present study we investigated the phosphorylation status of the 12 most important signaling cascades in glioblastomas. More than 60 tumor and control biopsies from tumor center and periphery (based on neuronavigation) were subjected to selective protein expression analysis using reverse-phase protein arrays (RPPA) incubated with antibodies against posttranslationally modified cancer pathway proteins. The ratio between phosphorylated (or modified) and non-phosphorylated protein was assessed. All samples were histopathologically validated and proteomic profiles correlated with clinical and survival data. By RPPA, we identified three distinct activation patterns within glioblastoma defined by the ratios of pCREB1/CREB1, NOTCH-ICD/NOTCH1, and pGSK3ß/GSK3ß, respectively. These subclasses demonstrated distinct overall survival patterns in a cohort of patients from a single-institution and in an analysis of publicly available data. In particular, a high pGSK3ß/GSK3ß-ratio was associated with a poor survival. Wnt-activation/GSK3ß-inhibition in U373 and U251 cell lines halted glioma cell proliferation and migration. Gene expression analysis was used as an internal quality control of baseline proteomic data. The protein expression and phosphorylation had a higher resolution, resulting in a better class-subdivision than mRNA based stratification data. Patients with different proteomic profiles from multiple biopsies showed a worse overall survival. The CREB1-, NOTCH1-, GSK3ß-phosphorylation status correlated with glioma grades. RPPA represent a fast and reliable tool to supplement morphological diagnosis with pathway-specific information in individual tumors. These data can be exploited for molecular stratification and possible combinatorial treatment planning. Further, our results may optimize current glioma grading algorithms.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Transdução de Sinais , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Análise Serial de Proteínas , Proteômica , Análise de Sobrevida
2.
Neurodegener Dis ; 17(6): 261-275, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28810250

RESUMO

BACKGROUND/AIMS: Cerebral small vessel disease (SVD) is characterized by periventricular white matter (WM) changes and can lead to vascular dementia, the second most common form of age-dependent dementia. The pathogenesis of the disease remains poorly understood, and studies of its molecular basis are limited. By profiling gene expression of dissected postmortem brain tissue in SVD patients and comparisons with tissue of nonneurological controls, we aimed to identify genes and processes that are involved in the pathogenesis of SVD to gain new pathogenetic insights. METHODS: We performed genome-wide expression analyses in postmortem brain tissue samples dissected from frontal, temporal, and occipital lobes as well as basal nuclei comprising thalamus, basal ganglia, and hippocampus from 5 SVD cases and 5 nonaffected control cases. Cellular pathways associated with differently expressed genes were identified in each brain region individually. RESULTS: This analysis disclosed regional differences, with frontal lobe and thalamus showing the highest numbers of genes with significantly altered expression. Biological functions and pathways associated with changed gene expression depicted brain area-specific defective pathways. Vessel-associated functions, such as increased extracellular matrix-receptor interactions and cell adhesion molecules, were enhanced in all regions. Inflammation and apoptosis were induced particularly in basal nuclei and temporal and occipital regions. Interestingly, genes associated with the ubiquitin-dependent proteolysis (ubiquitin proteasome system) pathway were downregulated in the frontal lobe and in the thalamus, leading to the formation of protein aggregates. CONCLUSION: This analysis deciphers brain region-specific molecular processes to increase the present knowledge of SVD pathology and determine new potential therapeutic targets.


Assuntos
Encéfalo/metabolismo , Doenças de Pequenos Vasos Cerebrais/patologia , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Autopsia , Encéfalo/patologia , Feminino , Expressão Gênica/fisiologia , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais/fisiologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas tau/metabolismo
3.
J Cell Sci ; 126(Pt 16): 3533-40, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23788430

RESUMO

Neural stem cells (NSCs) typically show efficient self-renewal and selective differentiation. Their invasion potential, however, is not well studied. In this study, Sox2-positive NSCs from the E14.5 rat cortex were found to be non-invasive and showed only limited migration in vitro. By contrast, FGF2-expanded NSCs showed a strong migratory and invasive phenotype in response to the combination of FGF2 and BMP4. Invasive NSCs expressed Podoplanin (PDPN) and p75NGFR (Ngfr) at the plasma membrane after exposure to FGF2 and BMP4. FGF2 and BMP4 together upregulated the expression of Msx1, Snail1, Snail2, Ngfr, which are all found in neural crest (NC) cells during or after epithelial-mesenchymal transition (EMT), but not in forebrain stem cells. Invasive cells downregulated the expression of Olig2, Sox10, Egfr, Pdgfra, Gsh1/Gsx1 and Gsh2/Gsx2. Migrating and invasive NSCs had elevated expression of mRNA encoding Pax6, Tenascin C (TNC), PDPN, Hey1, SPARC, p75NGFR and Gli3. On the basis of the strongest upregulation in invasion-induced NSCs, we defined a group of five key invasion-related genes: Ngfr, Sparc, Snail1, Pdpn and Tnc. These genes were co-expressed and upregulated in seven samples of glioblastoma multiforme (GBM) compared with normal human brain controls. Induction of invasion and migration led to low expression of differentiation markers and repressed proliferation in NSCs. Our results indicate that normal forebrain stem cells have the inherent ability to adopt a glioma-like invasiveness. The results provide a novel in vitro system to study stem cell invasion and a novel glioma invasion model: tumoral abuse of the developmental dorsoventral identity regulation.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Proteína Morfogenética Óssea 4/genética , Movimento Celular/fisiologia , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Humanos , Imuno-Histoquímica , Gravidez , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
4.
Elife ; 122023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38127790

RESUMO

Glioblastoma (GBM) harbors a highly immunosuppressive tumor microenvironment (TME) which influences glioma growth. Major efforts have been undertaken to describe the TME on a single-cell level. However, human data on regional differences within the TME remain scarce. Here, we performed high-depth single-cell RNA sequencing (scRNAseq) on paired biopsies from the tumor center, peripheral infiltration zone and blood of five primary GBM patients. Through analysis of >45,000 cells, we revealed a regionally distinct transcription profile of microglia (MG) and monocyte-derived macrophages (MdMs) and an impaired activation signature in the tumor-peripheral cytotoxic-cell compartment. Comparing tumor-infiltrating CD8+ T cells with circulating cells identified CX3CR1high and CX3CR1int CD8+ T cells with effector and memory phenotype, respectively, enriched in blood but absent in the TME. Tumor CD8+ T cells displayed a tissue-resident memory phenotype with dysfunctional features. Our analysis provides a regionally resolved mapping of transcriptional states in GBM-associated leukocytes, serving as an additional asset in the effort towards novel therapeutic strategies to combat this fatal disease.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Linfócitos T CD8-Positivos , Macrófagos/patologia , Glioma/genética , Leucócitos/patologia , Microambiente Tumoral/genética , Neoplasias Encefálicas/patologia
5.
Sci Transl Med ; 15(705): eadf5302, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37467314

RESUMO

Glioblastoma (GBM) is the most aggressive form of primary brain tumor, for which effective therapies are urgently needed. Cancer cells are capable of evading clearance by phagocytes such as microglia- and monocyte-derived cells through engaging tolerogenic programs. Here, we found that high expression of sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) correlates with reduced survival in patients with GBM. Using microglia- and monocyte-derived cell-specific knockouts of Siglec-E, the murine functional homolog of Siglec-9, together with single-cell RNA sequencing, we demonstrated that Siglec-E inhibits phagocytosis by these cells, thereby promoting immune evasion. Loss of Siglec-E on monocyte-derived cells further enhanced antigen cross-presentation and production of pro-inflammatory cytokines, which resulted in more efficient T cell priming. This bridging of innate and adaptive responses delayed tumor growth and resulted in prolonged survival in murine models of GBM. Furthermore, we showed the combinatorial activity of Siglec-E blockade and other immunotherapies demonstrating the potential for targeting Siglec-9 as a treatment for patients with GBM.


Assuntos
Glioblastoma , Ácido N-Acetilneuramínico , Humanos , Camundongos , Animais , Ácido N-Acetilneuramínico/metabolismo , Glioblastoma/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Fagocitose/fisiologia , Microglia/metabolismo
6.
Sci Adv ; 8(26): eabn9440, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35776791

RESUMO

A patient-tailored, ex vivo drug response platform for glioblastoma (GBM) would facilitate therapy planning, provide insights into treatment-induced mechanisms in the immune tumor microenvironment (iTME), and enable the discovery of biomarkers of response. We cultured regionally annotated GBM explants in perfusion bioreactors to assess iTME responses to immunotherapy. Explants were treated with anti-CD47, anti-PD-1, or their combination, and analyzed by multiplexed microscopy [CO-Detection by indEXing (CODEX)], enabling the spatially resolved identification of >850,000 single cells, accompanied by explant secretome interrogation. Center and periphery explants differed in their cell type and soluble factor composition, and responses to immunotherapy. A subset of explants displayed increased interferon-γ levels, which correlated with shifts in immune cell composition within specified tissue compartments. Our study demonstrates that ex vivo immunotherapy of GBM explants enables an active antitumoral immune response within the tumor center and provides a framework for multidimensional personalized assessment of tumor response to immunotherapy.

7.
Front Immunol ; 11: 571951, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117364

RESUMO

Tumor-associated microglia (MG) and macrophages (MΦ) are important components of the glioblastoma (GBM) immune tumor microenvironment (iTME). From the recent advances in understanding how MG and GBM cells evolve and interact during tumorigenesis, we emphasize the cooperation of MG with other immune cell types of the GBM-iTME, mainly MΦ and T cells. We provide a comprehensive overview of current immunotherapeutic clinical trials and approaches for the treatment of GBM, which in general, underestimate the counteracting contribution of immunosuppressive MG as a main factor for treatment failure. Furthermore, we summarize new developments and strategies in MG reprogramming/re-education in the GBM context, with a focus on ways to boost MG-mediated tumor cell phagocytosis and associated experimental models and methods. This ultimately converges in our proposal of novel combinatorial regimens that locally modulate MG as a central paradigm, and therefore may lead to additional, long-lasting, and effective tumoricidal responses.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Imunoterapia/métodos , Microglia/fisiologia , Animais , Neoplasias Encefálicas/imunologia , Reprogramação Celular , Ensaios Clínicos como Assunto , Glioblastoma/imunologia , Humanos , Fagocitose , Microambiente Tumoral
8.
Curr Neurovasc Res ; 16(5): 481-493, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31657685

RESUMO

BACKGROUND: Cerebral small vessel disease (SVD) is an important cause of stroke and vascular cognitive impairment (VCI), leading to subcortical ischemic vascular dementia. As a hereditary form of SVD with early onset, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) represents a pure form of SVD and may thus serve as a model disease for SVD. To date, underlying molecular mechanisms linking vascular pathology and subsequent neuronal damage in SVD are incompletely understood. OBJECTIVE: We performed comparative transcriptional profiling microarray and proteomic analyses on post-mortem frontal lobe specimen from 2 CADASIL patients and 5 non neurologically diseased controls in order to identify dysregulated pathways potentially involved in the development of tissue damage in CADASIL. METHODS: Transcriptional microarray analysis of material extracted from frontal grey and white matter (WM) identified subsets of up- or down-regulated genes enriched into biological pathways mostly in WM areas. Proteomic analysis of these regions also highlighted cellular processes identified by dysregulated proteins. RESULTS: Discrepancies between proteomic and transcriptomic data were observed, but a number of pathways were commonly associated with genes and corresponding proteins, such as: "ribosome" identified by upregulated genes and proteins in frontal cortex or "spliceosome" associated with down-regulated genes and proteins in frontal WM. CONCLUSION: This latter finding suggests that defective expression of spliceosomal components may alter widespread splicing profile, potentially inducing expression abnormalities that could contribute to cerebral WM damage in CADASIL.


Assuntos
CADASIL/metabolismo , Lobo Frontal/metabolismo , Proteoma , Transcriptoma , Substância Branca/metabolismo , Idoso , Idoso de 80 Anos ou mais , CADASIL/genética , CADASIL/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica , Substância Branca/patologia
9.
EBioMedicine ; 46: 32-41, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31331834

RESUMO

BACKGROUND: Gliomas are the most frequent and aggressive malignancies of the central nervous system. Decades of molecular analyses have demonstrated that gliomas accumulate genetic alterations that culminate in enhanced activity of receptor tyrosine kinases and downstream mediators. While the genetic alterations, like gene amplification or loss, have been well characterized, little information exists about changes in the proteome of gliomas of different grades. METHODS: We performed unbiased quantitative proteomics of human glioma biopsies by mass spectrometry followed by bioinformatic analysis. FINDINGS: Various pathways were found to be up- or downregulated. In particular, endocytosis as pathway was affected by a vast and concomitant reduction of multiple machinery components involved in initiation, formation, and scission of endocytic carriers. Both clathrin-dependent and -independent endocytosis were changed, since not only clathrin, AP-2 adaptins, and endophilins were downregulated, but also dynamin that is shared by both pathways. The reduction of endocytic machinery components caused increased receptor cell surface levels, a prominent phenotype of defective endocytosis. Analysis of additional biopsies revealed that depletion of endocytic machinery components was a common trait of various glioma grades and subclasses. INTERPRETATION: We propose that impaired endocytosis creates a selective advantage in glioma tumor progression due to prolonged receptor tyrosine kinase signaling from the cell surface. FUND: This work was supported by Grants 316030-164105 (to P. Jenö), 31003A-162643 (to M. Spiess) and PP00P3-176974 (to G. Hutter) from the Swiss National Science Foundation. Further funding was received by the Department of Surgery from the University Hospital Basel.


Assuntos
Endocitose , Glioma/metabolismo , Proteoma , Proteômica , Biópsia , Biologia Computacional/métodos , Glioma/genética , Glioma/patologia , Humanos , Espectrometria de Massas , Gradação de Tumores , Estadiamento de Neoplasias , Células Neoplásicas Circulantes , Proteômica/métodos
10.
Brain Pathol ; 29(3): 336-350, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30403311

RESUMO

Diffuse gliomas progress by invading neighboring brain tissue to promote postoperative relapse. Transcription factor SOX2 is highly expressed in invasive gliomas and maps to chromosome region 3q26 together with the genes for PI3K/AKT signaling activator PIK3CA and effector molecules of mitochondria fusion and cell invasion, MFN1 and OPA1. Gene copy number analysis at 3q26 from 129 glioma patient biopsies revealed mutually exclusive SOX2 amplifications (26%) and OPA1 losses (19%). Both forced SOX2 expression and OPA1 inactivation increased LN319 glioma cell invasion in vitro and promoted cell dispersion in vivo in xenotransplanted D. rerio embryos. While PI3 kinase activity sustained SOX2 expression, pharmacological PI3K/AKT pathway inhibition decreased invasion and resulted in SOX2 nucleus-to-cytoplasm translocation in an mTORC1-independent manner. Chromatin immunoprecipitation and luciferase reporter gene assays together demonstrated that SOX2 trans-activates PIK3CA and OPA1. Thus, SOX2 activates PI3K/AKT signaling in a positive feedback loop, while OPA1 deletion is interpreted to counteract OPA1 trans-activation. Remarkably, neuroimaging of human gliomas with high SOX2 or low OPA1 genomic imbalances revealed significantly larger necrotic tumor zone volumes, corresponding to higher invasive capacities of tumors, while autologous necrotic cells are capable of inducing higher invasion in SOX2 overexpressing or OPA1 knocked-down relative to parental LN319. We thus propose necrosis volume as a surrogate marker for the assessment of glioma invasive potential. Whereas glioma invasion is activated by a PI3K/AKT-SOX2 loop, it is reduced by a cryptic invasion suppressor SOX2-OPA1 pathway. Thus, PI3K/AKT-SOX2 and mitochondria fission represent connected signaling networks regulating glioma invasion.


Assuntos
Cromossomos Humanos Par 3 , Classe I de Fosfatidilinositol 3-Quinases/genética , GTP Fosfo-Hidrolases/genética , Glioma/genética , Fatores de Transcrição SOXB1/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Variações do Número de Cópias de DNA , GTP Fosfo-Hidrolases/metabolismo , Glioma/metabolismo , Glioma/patologia , Células HEK293 , Humanos , Necrose/genética , Invasividade Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais
11.
J Nutr ; 138(3): 519-25, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18287360

RESUMO

In this study, we investigated the in vivo effects of red wine polyphenol compounds (RWPC) in rats that were submitted to middle cerebral occlusion as an experimental model of stroke. Male Wistar rats were given RWPC [30 mg/(kg x d) dissolved in drinking water] or water for 1 wk before being subjected to transient middle cerebral artery occlusion followed by reperfusion. Sham-operated rats were subjected to transient occlusion in which the filament was not completely introduced. The release of amino acids and energy metabolites were monitored by intracerebral microdialysis. The volume of the ischemic lesion was assessed 24 h after reperfusion. Proteomic analysis of brain tissue was performed to study the effects of ischemia and RWPC on specific protein expression. Treatment with RWPC completely prevented the burst of excitatory amino acids that occurred in response to ischemia in untreated rats and significantly reduced brain infarct volumes. Rats chronically treated with RWPC, however, had lower basal concentrations of energy metabolites, including glucose and lactate in the brain parenchyma, compared with untreated rats. Chronic RWPC treatment significantly enhanced the residual cerebral blood flow during occlusion and reperfusion in rats subjected to transient occlusion compared with untreated rats. This effect resulted from arterial vasodilatation, as the internal diameters of several arteries were significantly enlarged after RWPC treatment. Proteomic studies revealed the modulation by RWPC of the expression of proteins involved in the maintenance of neuronal caliber and axon formation, in the protection against oxidative stress, and in energy metabolism. These findings provide an experimental basis for the beneficial effects of RWPC on the neurovascular unit during stroke.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Flavonoides/química , Flavonoides/farmacologia , Fenóis/química , Fenóis/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Vinho/análise , Aminoácidos/metabolismo , Animais , Velocidade do Fluxo Sanguíneo , Infarto Encefálico/patologia , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/metabolismo , Metabolismo Energético/efeitos dos fármacos , Sequestradores de Radicais Livres/metabolismo , Masculino , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Polifenóis , Ratos , Ratos Wistar , Fatores de Tempo
12.
Brain Res ; 1203: 177-88, 2008 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-18316064

RESUMO

The effect of 17beta-estradiol on the secondary damage following spinal cord injury (SCI) was examined in male rats subjected to moderate compression. Two doses of 17beta-estradiol (0.1 or 4 mg/kg) were injected i.p. immediately after spinal cord compression. Functional outcome was observed during 4 weeks following injury with two different tests. Release of cytokines (IL-1alpha, IL-1beta and IL-6) was assessed 6 h, 3 days and 1 week post-injury. Reactive astrocytes expressing the glial fibrillary acidic protein GFAP and vimentin, and diffusion of CD68-positive inflammatory cells were examined from 3 days to 4 weeks following SCI. Treatment with 17beta-estradiol significantly increased locomotor function from the first week until 4 weeks post-SCI. The injured spinal cord of 17beta-estradiol-treated rats expressed more IL-1alpha, IL-1beta and IL-6 than controls 6 h after injury. Moreover, 17beta-estradiol-treated rats showed reactive astrocytes as soon as 3 days following SCI, with increased GFAP expression, smaller lesion areas and more limited diffusion of CD68-positive cells after 1 week post-injury compared to controls. The number of CD68-positive cells was also reduced in 17beta-estradiol-treated rats one week post-SCI. However, these differences between 17beta-estradiol-treated and control rats disappeared after 4 weeks. These results suggest that 17beta-estradiol protects the spinal cord by stimulating early cytokines release and astroglial responses. These stimulations may prevent the area of damage from expanding and inflammatory cells to spread in the surrounding tissue during the critical first week following SCI. Although transient, these effects improved the locomotor recovery that was sustained over 4 weeks after injury.


Assuntos
Astrócitos/efeitos dos fármacos , Citocinas/metabolismo , Estradiol/uso terapêutico , Estrogênios/uso terapêutico , Inflamação , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal , Análise de Variância , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Fatores de Tempo , Vimentina/metabolismo
13.
Curr Neurovasc Res ; 13(1): 58-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26503025

RESUMO

Cerebral small-vessel disease (SVD) is characterized by periventricular white matter (WM) changes and general brain atrophy. SVD is prevalent in elderly individuals and is frequently associated with the development of vascular dementia (VaD). Studies of the molecular basis of SVD are sparse. We have to gain further insight into the pathogenic mechanisms of SVD. Therefore, we compared gene expression patterns in the brains of SVD and control patients, in order to identify cellular pathways changed in diseased brains. We compared the expression of mRNA transcripts in postmortem, macroscopically normal-appearing human brain tissues isolated from frontal, temporal and occipital cortical and subcortical regions in 5 SVD and 5 non-SVD control patients. Significant expression changes were determined by fold change F>1.2 in either direction, and p<0.05. We identified 228 genes differentially expressed in cortex (89 up-, 139 down-regulated) and 555 genes in WM (223 up-, 332 down-regulated) in SVD patients. Pathway analyses revealed that upregulated genes were associated with inflammation and apoptosis in WM, suggesting active cell death. Downregulated genes were associated with coagulation and fatty and amino acids metabolisms. In the cortex, down-regulated genes were principally associated with neuronal functions. Our data revealed widespread changes in the transcriptome profiles in the cortex and WM of human SVD brains, with a predominance of changes in WM. We provide for the first time a comprehensive view of the molecular alterations in human SVD brains that seem to contribute to the neuropathogenesis of SVD.


Assuntos
Encéfalo/metabolismo , Doenças de Pequenos Vasos Cerebrais/patologia , Regulação da Expressão Gênica/fisiologia , Inflamação/diagnóstico , Doenças Metabólicas/diagnóstico , Transdução de Sinais/fisiologia , Idoso , Idoso de 80 Anos ou mais , Sobrevivência Celular/fisiologia , Doenças de Pequenos Vasos Cerebrais/complicações , Mapeamento Cromossômico , Biologia Computacional , Citocinas/genética , Citocinas/metabolismo , Diagnóstico , Feminino , Humanos , Inflamação/etiologia , Masculino , Doenças Metabólicas/etiologia , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Transcriptoma
14.
Brain Res ; 1022(1-2): 157-63, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15353225

RESUMO

Elevation of extracellular levels of amino acids has been implicated in the pathogenesis of stroke. The failure of brain energy metabolism due to the lack of oxygen and glucose contributes also to cell loss. Estrogen has been shown to protect brain cells against ischemia by a still unclear mechanism. We used intracerebral microdialysis to monitor the effects of acute 17beta-estradiol treatment on the release of glutamate and aspartate and on the levels of the energy metabolites glucose and lactate. In male rats subjected to 90 min of transient middle cerebral artery occlusion followed by 24-h reperfusion, acute treatment with 17beta-estradiol (0.8 mg/kg, i.v.) at the time of occlusion reduced the ischemic infarct by about 50%. In these treated rats, the ischemia-induced increases of extracellular levels of glutamate and aspartate were significantly and rapidly reduced. The reduction of glucose level during occlusion was not affected by 17beta-estradiol treatment; however, the increase of extracellular lactate was reduced during occlusion and reperfusion, probably due to the reduced glutamate-driven astrocytic glycolysis. These data suggest that acute treatment with 17beta-estradiol at the onset of occlusion significantly reduces the ischemia-induced excitotoxicity in the cortex, a mechanism that may participate in the neuroprotective effect on cellular survival.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Estradiol/administração & dosagem , Aminoácidos Excitatórios/metabolismo , Espaço Extracelular/efeitos dos fármacos , Ataque Isquêmico Transitório/metabolismo , Análise de Variância , Animais , Ácido Aspártico/metabolismo , Infarto Encefálico/etiologia , Infarto Encefálico/prevenção & controle , Cromatografia Líquida de Alta Pressão/métodos , Modelos Animais de Doenças , Eletroquímica/métodos , Metabolismo Energético/fisiologia , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Ataque Isquêmico Transitório/complicações , Masculino , Microdiálise/métodos , Ratos , Ratos Wistar , Reperfusão/métodos , Fatores de Tempo
15.
Curr Neurovasc Res ; 9(1): 10-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22272763

RESUMO

Cerebral small vessel disease (SVD) is an important cause of stroke, cognitive decline and vascular dementia (VaD). It is associated with diffuse white matter abnormalities and small deep cerebral ischemic infarcts. The molecular mechanisms involved in the development and progression of SVD are unclear. As hypertension is a major risk factor for developing SVD, Spontaneously Hypertensive Rats (SHR) are considered an appropriate experimental model for SVD. Prior work suggested an imbalance between the number of blood microvessels and astrocytes at the level of the neurovascular unit in 2-month-old SHR, leading to neuronal hypoxia in the brain of 9-month-old animals. To identify genes and pathways involved in the development of SVD, we compared the gene expression profile in the cortex of 2 and 9-month-old of SHR with age-matched normotensive Wistar Kyoto (WKY) rats using microarray-based technology. The results revealed significant differences in expression of genes involved in energy and lipid metabolisms, mitochondrial functions, oxidative stress and ischemic responses between both groups. These results strongly suggest that SHR suffer from chronic hypoxia, and therefore are unable to tolerate ischemia-like conditions, and are more vulnerable to high-energy needs than WKY. This molecular analysis gives new insights about pathways accounting for the development of SVD.


Assuntos
Encéfalo/metabolismo , Doenças de Pequenos Vasos Cerebrais/metabolismo , Hipertensão/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Hipóxia Celular/genética , Doenças de Pequenos Vasos Cerebrais/etiologia , Doenças de Pequenos Vasos Cerebrais/genética , Perfilação da Expressão Gênica , Hipertensão/complicações , Hipertensão/genética , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Curr Neurovasc Res ; 8(4): 334-41, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22023610

RESUMO

Disruption of the blood-spinal cord barrier (BSCB) and microvascular changes leading to reduction of blood supply represent hallmarks of spinal cord secondary injury causing further deterioration of the traumatized patient. Injury to the blood vessels starts with prominent hemorrhage and generation of inflammation. Furthermore, spinal cord ischemia and extravasation of blood components contribute to edema formation resulting in death of neural cells. Endogenous attempts of re-vascularization have been observed although these newly formed vessels display morphological and functional abnormalities. The unfavorable regulation of angiogenic and counterregulatory anti-angiogenic factors during the complicated course of vessel remodeling after SCI is suspected to participate in the failure of re-vascularization and vessel stabilization. Repression of the expression of angiogenic factors such as vascular endothelial growth factor-A (VEGF-A), placental growth factor (PlGF), angiopoietin-1 (Ang1), and platelet-derived growth factor-BB (PDGF-BB) contributes to vessel regression. Therefore, therapeutic applications of angiogenic factors following SCI are promising strategies to restore blood flow in the lesion.


Assuntos
Indutores da Angiogênese/uso terapêutico , Neovascularização Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/fisiopatologia , Animais , Modelos Animais de Doenças , Humanos , Neovascularização Fisiológica/fisiologia , Recuperação de Função Fisiológica/fisiologia
17.
Curr Neurovasc Res ; 7(4): 301-10, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20860549

RESUMO

Traumatic spinal cord injury (SCI) disrupts the blood-spinal cord barrier and reduces the blood supply caused by microvascular changes. Vessel regression and neovascularization have been observed in the course of secondary injury contributing to microvascular remodeling after trauma. Spatio-temporal distribution of blood vessels and modulation of gene expression of several angiogenic factors have been investigated in rats after spinal cord compression injury. Rarefaction of vessels was detectable at the injury site 2 days after SCI before they disappeared in the developing cavity after 2 and 4 weeks, whereas no changes were observed in the penumbra. Investigation of the temporal expression of angiogenic genes using quantitative RT-PCR disclosed a constant down-regulation of the vascular endothelial growth factor (VEGF), and transient decreases of angiopoietin-1 (Ang-1), platelet-derived growth factor-BB (PDGF-BB), as well as placental growth factor (PlGF), with the lowest values obtained 3 days after injury, when compared to the expression levels obtained in sham-operated rats. Hepatocyte growth factor (HGF) was the only angiogenic factor with a constant increased gene expression when compared with controls, starting at day 3 post-SCI. mRNA levels of transforming growth factor-beta 1 (TGF-ß1) were elevated at every time point following SCI, whereas those encoding for the cysteine-rich protein CCN1/CYR61 were upregulated after 2 h, 6 h, and 1 week only. Our data provide an overview of the temporal modulated expression of the major angiogenic factors, hampering revascularization in the lesion during the phase of secondary injury. These findings should be considered in order to improve therapeutic interventions.


Assuntos
Indutores da Angiogênese/metabolismo , Regulação da Expressão Gênica/fisiologia , Traumatismos da Medula Espinal , Medula Espinal/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Animais , Becaplermina , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Masculino , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-sis , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Fatores de Tempo , Fator de Crescimento Transformador beta1/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
18.
Curr Neurovasc Res ; 7(2): 144-54, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20374199

RESUMO

Compression injury to the spinal cord (SC) results in vascular changes affecting the severity of the primary damage of the spinal cord. The recruitment of bone marrow (BM)-derived cells contribute to revascularization and tissue regeneration in a wide range of ischemic pathologies. Involvement of these cells in the vascular repair process has been investigated in an animal model of spinal cord injury (SCI). Temporal gene and protein expression of the BM-derived stem cell markers CD133 and CD34, of the mobilization factor SDF-1 and its receptor CXCR4 were determined following SC compression injury in rats. CD133 was expressed in uninjured tissue by cells surrounding arterioles identified as pericytes by co-expression of alpha-SMA. These cells mostly disappeared 2 days after injury but repopulated the tissue after 2 weeks. CD34 was expressed by endothelial cells and CD11b+ macrophages/microglia invading the injured tissue as observed 2 weeks following injury. SDF-1 was induced in reactive astrocytes and endothelial cells not until 2 weeks post-SCI. Comparison of the variation between CD34, CD133, CXCR4, and SDF-1 revealed a corresponding trend of CD133 with the SDF-1 expression. This study showed that resident microvascular CD133+ pericytes with presumptive stem cell potential are sensitive to SCI. Their decline following SCI and the delayed induction of SDF-1 may contribute to vessel destabilisation and inefficient revascularization. In addition, none of the analyzed markers could be assigned clearly to BM-derived cells. Together, our findings suggest that effective recruitment of pericytes may serve as a therapeutic option to improve microcirculation after SCI.


Assuntos
Antígenos CD/metabolismo , Regulação da Expressão Gênica/fisiologia , Glicoproteínas/metabolismo , Peptídeos/metabolismo , Pericitos/metabolismo , Traumatismos da Medula Espinal , Antígeno AC133 , Animais , Antígeno CD11b/metabolismo , Quimiocina CXCL12/metabolismo , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar , Recombinases Rec A/metabolismo , Receptores CXCR4/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Estatísticas não Paramétricas , Fatores de Tempo
19.
Curr Neurovasc Res ; 6(4): 279-87, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19807651

RESUMO

Cerebral small vessel disease (SVD) is a major contributor to dementia in the elderly, and hypertension represents a major cause for developing the disease. However, little is known about its development and progression. Modifications of large cerebral arteries due hypertension are thought to participate to the development of small ischemic infarcts, but the status of the small vessels before the establishment of hypertension is not well defined. Using spontaneously hypertensive rats (SHR) and stroke-prone SHR (SP-SHR) as a models for SVD, we analysed the effect of hypertension on the microvasculature in the cortex and putamen, and on its relationship with astrocytes in animals aged 2 to 9 months. Compared with the normotensive Wistar-Kyoto rats (WKY), the densities of the collagen type IV-positive capillaries were significantly higher in both brain areas of young SHR and SP-SHR. In contrast, the expression of the astrocytic marker GFAP was significantly lower in these animals, whereas astrogliosis was observed after 6 months in their cortex only. To investigate if chronic hypoxia occurs due to the lower number of astrocytes in young SHR and SP-SHR, we evaluated the levels of HIF-1alpha in both brain regions. The accumulation of HIF-1alpha was not observed at the youngest ages, but was apparent in neurons of 9-month-old SHR and SP-SHR. Our results indicate that the brains of young SHR and SP-SHR rats show evidence of cellular imbalance between microvessels and astrocytes at the neurovascular unit that may lead to their higher vulnerability to hypoxic events at older ages.


Assuntos
Envelhecimento/fisiologia , Astrócitos/fisiologia , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/crescimento & desenvolvimento , Putamen/irrigação sanguínea , Putamen/crescimento & desenvolvimento , Animais , Pressão Sanguínea/fisiologia , Peso Corporal/fisiologia , Capilares/fisiologia , Circulação Cerebrovascular/fisiologia , Imunofluorescência , Proteína Glial Fibrilar Ácida/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
20.
Brain Res ; 1239: 226-34, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18801346

RESUMO

Red wine polyphenolic compounds (RWPC) possess numerous neuroprotective activities that may be beneficial for treating cerebral ischemia. To investigate the in vivo effects of an acute treatment with RWPC during stroke, male Wistar rats were subjected to transient ischemia for 90 min and immediately treated with RWPC. The extracellular concentrations of excitatory amino acids, free radical scavengers and energy metabolites during occlusion and reperfusion were monitored using microdialysis. The brain lesions were measured 24 h after reperfusion using immunohistological staining. We found that acute treatment with RWPC significantly reduced the burst of amino acids glutamate, aspartate and taurine in response to ischemia and increased the levels of free radical scavengers ascorbic and uric acids during occlusion or at early reperfusion, respectively. The concentration of glucose was improved during occlusion whereas the level of lactate strongly decreased during reperfusion in RWPC treated animals, suggesting an increased use of this substrate by surviving neurons. RWPC also significantly improved blood flow during reperfusion and brain tissue preservation as observed 24 h after MCAO in treated animals. These findings strongly suggest that RWPC are agents able to fight against the excitotoxic, oxidative pathways and metabolic dysfunction induced by cerebral ischemia.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Flavonoides/farmacologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fenóis/farmacologia , Vinho , Animais , Encéfalo/irrigação sanguínea , Encéfalo/fisiopatologia , Isquemia Encefálica/fisiopatologia , Circulação Cerebrovascular , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Aminoácidos Excitatórios/metabolismo , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Sequestradores de Radicais Livres/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Polifenóis , Ratos , Ratos Wistar , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA