Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2300011, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452434

RESUMO

Patients undergoing gynecological procedures suffer from lasting side effects due to intraoperative nerve damage. Small, delicate nerves with complex and nonuniform branching patterns in the female pelvic neuroanatomy make nerve-sparing efforts during standard gynecological procedures such as hysterectomy, cystectomy, and colorectal cancer resection difficult, and thus many patients are left with incontinence and sexual dysfunction. Herein, a near-infrared (NIR) fluorescent nerve-specific contrast agent, LGW08-35, that is spectrally compatible with clinical fluorescence guided surgery (FGS) systems is formulated and characterized for rapid implementation for nerve-sparing gynecologic surgeries. The toxicology, pharmacokinetics (PK), and pharmacodynamics (PD) of micelle formulated LGW08-35 are examined, enabling the determination of the optimal imaging doses and time points, blood and tissue uptake parameters, and maximum tolerated dose (MTD). Application of the formulated fluorophore to imaging of female rat and swine pelvic neuroanatomy validates the continued clinical translation and use for real-time identification of important nerves such as the femoral, sciatic, lumbar, iliac, and hypogastric nerves. Further development of LGW08-35 for clinical use will unlock a valuable tool for surgeons in direct visualization of important nerves and contribute to the ongoing characterization of the female pelvic neuroanatomy to eliminate the debilitating side effects of nerve damage during gynecological procedures.

2.
Adv Mater ; 36(16): e2304724, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37653576

RESUMO

Fluorescence-guided surgery (FGS) is poised to revolutionize surgical medicine through near-infrared (NIR) fluorophores for tissue- and disease-specific contrast. Clinical open and laparoscopic FGS vision systems operate nearly exclusively at NIR wavelengths. However, tissue-specific NIR contrast agents compatible with clinically available imaging systems are lacking, leaving nerve tissue identification during prostatectomy a persistent challenge. Here, it is shown that combining drug-like molecular design concepts and fluorophore chemistry enabled the production of a library of NIR phenoxazine-based fluorophores for intraoperative nerve-specific imaging. The lead candidate readily delineated prostatic nerves in the canine and iliac plexus in the swine using the clinical da Vinci Surgical System that has been popularized for minimally invasive prostatectomy procedures. These results demonstrate the feasibility of molecular engineering of NIR nerve-binding fluorophores for ready integration into the existing surgical workflow, paving the path for clinical translation to reduce morbidity from nerve injury for prostate cancer patients.


Assuntos
Tecido Nervoso , Oxazinas , Neoplasias da Próstata , Masculino , Humanos , Animais , Cães , Suínos , Corantes Fluorescentes/química , Prostatectomia/métodos
3.
Int J Pharm ; 577: 119033, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31954864

RESUMO

The limited brain delivery of carbamezapine (CBZ) presents a major hurdle in the successful epilepsy treatment. The potential of carbamezapine-loaded nanostructured lipid carriers (CBZ-NLCs) for improved brain delivery is investigated in the current study. CBZ-NLCs were prepared by using binary mixture of trilaurin and oleic acid as a lipid core stabilized with Poloxamer 188, Tween 80 and Span 80. CBZ-NLCs were evaluated for physicochemical properties, in vitro release, in vivo brain kinetics, anticonvulsant and anxiolytic activities. The optimized CBZ-NLCs demonstrated nanometric particle size (97.7 nm), surface charge of -22 mV and high drug incorporation (85%). CBZ-NLCs displayed biphasic release pattern with initial fast followed by sustained drug release. CBZ-NLCs significantly enhanced the AUC of CBZ (520.4 µg·h/mL) in brain compared with CBZ dispersion (244.9 µg·h/mL). In vivo anticonvulsant activity of CBZ-NLCs in PTZ-induced seizure model showed a significant increase in the onset time (143.0 sec) and reduction in duration (17.2 sec) of tonic-clonic seizures compared with CBZ dispersion (75.4 and 37.2 sec). The anxiolytic activity in light-dark box and elevated-plus maze models also demonstrated superiority of CBZ-NLCs to CBZ dispersion. From the results, CBZ-NLCs presents a promising strategy to improve brain delivery and therapeutic outcomes of CBZ in epilepsy.


Assuntos
Carbamazepina/química , Lipídeos/química , Nanoestruturas/química , Convulsões/prevenção & controle , Animais , Ansiolíticos/sangue , Ansiolíticos/química , Ansiolíticos/farmacocinética , Ansiolíticos/farmacologia , Anticonvulsivantes/sangue , Anticonvulsivantes/química , Anticonvulsivantes/farmacocinética , Anticonvulsivantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Carbamazepina/sangue , Carbamazepina/farmacocinética , Carbamazepina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Hexoses/química , Masculino , Ácido Oleico/química , Tamanho da Partícula , Poloxâmero/química , Polissorbatos/química , Ratos , Convulsões/induzido quimicamente , Propriedades de Superfície , Triglicerídeos/química
4.
Int J Pharm ; 560: 136-143, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30753932

RESUMO

The objective of current study was to develop solid lipid nanoparticles-loaded with simvastatin (SIM-SLNs) and investigate their in vivo anti-hyperlipidemic activity in poloxamer-induced hyperlipidemia model. Nano-template engineering technique was used to prepare SIM-SLNs with palmityl alcohol as lipid core and a mixture of Tween 40/Span 40/Myrj 52 to stabilize the core. The prepared SIM-SLNs were evaluated for physicochemical parameters including particle diameter, surface charge, morphology, incorporation efficiency, thermal behaviour and crystallinity. In vitro release profile of SIM-SLNs in simulated gastric and intestinal fluids was evaluated by using dialysis bag technique and anti-hyperlipidemic activity was assessed in hyperlipidemia rat model. SIM-SLNs revealed uniform particle size with spherical morphology, zeta potential of -24.9 mV and high incorporation efficiency (∼85%). Thermal behaviour and crystallinity studies demonstrated successful incorporation of SIM in the lipid core and its conversion to amorphous form. SIM-SLNs demonstrated a sustained SIM release from the lipid core of nanoparticles. SIM-SLNs significantly reduced the elevated serum lipids as indicated by ∼3.9 and ∼1.5-times decreased total cholesterol compared to those of untreated control and SIM dispersion treated hyperlipidemic rats. In conclusion, SIM-SLNs showed a great promise for improving the therapeutic outcomes of SIM via its effective oral delivery.


Assuntos
Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/administração & dosagem , Nanopartículas , Sinvastatina/administração & dosagem , Administração Oral , Animais , Cristalização , Preparações de Ação Retardada , Modelos Animais de Doenças , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Hipolipemiantes/farmacologia , Lipídeos/química , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Sinvastatina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA