Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Perfusion ; 32(2): 126-132, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27591743

RESUMO

BACKGROUND: HemoSep® is a commercial ultrafiltration and haemoconcentration device for the concentration of residual bypass blood following surgery. This technology is capable of reducing blood loss in cardiac and other types of "clean site" procedures, including paediatric surgery. Clinical feedback suggested that the device would be enhanced by including a sensor technology capable of discerning the concentration level of the processed blood product. We sought to develop a novel sensor that can, using light absorption, give an accurate estimate of packed cell volume (PCV). MATERIALS AND METHODS: A sensor-housing unit was 3D printed and the factors influencing the sensor's effectiveness - supply voltage, sensitivity and emitter intensity - were optimised. We developed a smart system, using comparator circuitry capable of visually informing the user when adequate PCV levels (⩾35%) are attained by HemoSep® blood processing, which ultimately indicates that the blood is ready for autotransfusion. RESULTS: Our data demonstrated that the device was capable of identifying blood concentration at and beyond the 35% PCV level. The device was found to be 100% accurate at identifying concentration levels of 35% from a starting level of 20%. DISCUSSION: The sensory capability was integrated into HemoSep's® current device and is designed to enhance the user's clinical experience and to optimise the benefits of HemoSep® therapy. The present study focused on laboratory studies using bovine blood. Further studies are now planned in the clinical setting to confirm the efficacy of the device.


Assuntos
Técnicas Biossensoriais/métodos , Hematócrito/métodos , Ultrafiltração/métodos , Animais , Técnicas Biossensoriais/instrumentação , Células Sanguíneas/citologia , Perda Sanguínea Cirúrgica/prevenção & controle , Ponte Cardiopulmonar/métodos , Bovinos , Separação Celular/métodos , Desenho de Equipamento , Hematócrito/instrumentação , Humanos , Impressão Tridimensional
2.
Int J Stroke ; 10(1): 42-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25042078

RESUMO

BACKGROUND: Acute ischemic stroke is common and disabling, but there remains a paucity of acute treatment options and available treatment (thrombolysis) is underutilized. Advanced brain imaging, designed to identify viable hypoperfused tissue (penumbra), could target treatment to a wider population. Existing magnetic resonance imaging and computed tomography-based technologies are not widely used pending validation in ongoing clinical trials. T2* oxygen challenge magnetic resonance imaging, by providing a more direct readout of tissue viability, has the potential to identify more patients likely to benefit from thrombolysis - irrespective of time from stroke onset - and patients within and beyond the 4·5 h thrombolysis treatment window who are unlikely to benefit and are at an increased risk of hemorrhage. AIMS: This study employs serial multimodal imaging and voxel-based analysis to develop optimal data processing for T2* oxygen challenge penumbra assessment. Tissue in the ischemic hemisphere is compartmentalized into penumbra, ischemic core, or normal using T2* oxygen challenge (single threshold) or T2* oxygen challenge plus cerebral blood flow (dual threshold) data. Penumbra defined by perfusion imaging/apparent diffusion coefficient mismatch (dual threshold) is included for comparison. METHODS: Permanent middle cerebral artery occlusion was induced in male Sprague-Dawley rats (n = 6) prior to serial multimodal imaging: T2* oxygen challenge, diffusion-weighted and perfusion imaging (cerebral blood flow using arterial spin labeling). RESULTS: Across the different methods evaluated, T2* oxygen challenge combined with perfusion imaging most closely predicted 24 h infarct volume. Penumbra volume declined from one to four-hours post-stroke: mean ± SD, 77 ± 44 to 49 ± 37 mm(3) (single T2* oxygen challenge-based threshold); 55 ± 41 to 37 ± 12 mm(3) (dual T2* oxygen challenge/cerebral blood flow); 84 ± 64 to 42 ± 18 mm(3) (dual cerebral blood flow/apparent diffusion coefficient), as ischemic core grew: 155 ± 37 to 211 ± 36 mm(3) (single apparent diffusion coefficient threshold); 178 ± 56 to 205 ± 33 mm(3) (dual T2* oxygen challenge/cerebral blood flow); 139 ± 30 to 168 ± 38 mm(3) (dual cerebral blood flow/apparent diffusion coefficient). There was evidence of further lesion growth beyond four-hours (T2-defined edema-corrected infarct, 231 ± 19 mm(3) ). CONCLUSIONS: In conclusion, T2* oxygen challenge combined with perfusion imaging has advantages over alternative magnetic resonance imaging techniques for penumbra detection by providing serial assessment of available penumbra based on tissue viability.


Assuntos
Isquemia Encefálica/patologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Animais , Masculino , Ratos , Ratos Sprague-Dawley
3.
J Cereb Blood Flow Metab ; 31(8): 1799-806, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21559031

RESUMO

Accurate imaging of the ischemic penumbra is a prerequisite for acute clinical stroke research. T(2)(*) magnetic resonance imaging (MRI) combined with an oxygen challenge (OC) is being developed to detect penumbra based on changes in blood deoxyhemoglobin. However, inducing OC with 100% O(2) induces sinus artefacts on human scans and influences cerebral blood flow (CBF), which can affect T(2)(*) signal. Therefore, we investigated replacing 100% O(2) OC with 40% O(2) OC (5 minutes 40% O(2) versus 100% O(2)) and determined the effects on blood pressure (BP), CBF, tissue pO(2), and T(2)(*) signal change in presumed penumbra in a rat stroke model. Probes implanted into penumbra and contralateral cortex simultaneously recorded pO(2) and CBF during 40% O(2) (n=6) or 100% O(2) (n=8) OC. In a separate MRI study, T(2)(*) signal change to 40% O(2) (n=6) and 100% O(2) (n=5) OC was compared. Oxygen challenge (40% and 100% O(2)) increased BP by 8.2% and 18.1%, penumbra CBF by 5% and 15%, and penumbra pO(2) levels by 80% and 144%, respectively. T(2)(*) signal significantly increased by 4.56% ± 1.61% and 8.65% ± 3.66% in penumbra compared with 2.98% ± 1.56% and 2.79% ± 0.66% in contralateral cortex and 1.09% ± 0.82% and -0.32% ± 0.67% in ischemic core, respectively. For diagnostic imaging, 40% O(2) OC could provide sufficient T(2)(*) signal change to detect penumbra with limited influence in BP and CBF.


Assuntos
Imageamento por Ressonância Magnética/métodos , Oxigênio/metabolismo , Acidente Vascular Cerebral/diagnóstico , Animais , Pressão Sanguínea , Circulação Cerebrovascular/fisiologia , Diagnóstico por Imagem , Modelos Animais de Doenças , Ratos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia
4.
J Cereb Blood Flow Metab ; 31(8): 1788-98, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21559030

RESUMO

Magnetic resonance imaging (MRI) with oxygen challenge (T(2)(*) OC) uses oxygen as a metabolic biotracer to define penumbral tissue based on CMRO(2) and oxygen extraction fraction. Penumbra displays a greater T(2)(*) signal change during OC than surrounding tissue. Since timely restoration of cerebral blood flow (CBF) should salvage penumbra, T(2)(*) OC was tested by examining the consequences of reperfusion on T(2)(*) OC-defined penumbra. Transient ischemia (109 ± 20 minutes) was induced in male Sprague-Dawley rats (n=8). Penumbra was identified on T(2)(*)-weighted MRI during OC. Ischemia and ischemic injury were identified on CBF and apparent diffusion coefficient maps, respectively. Reperfusion was induced and scans repeated. T(2) for final infarct and T(2)(*) OC were run on day 7. T(2)(*) signal increase to OC was 3.4% in contralateral cortex and caudate nucleus and was unaffected by reperfusion. In OC-defined penumbra, T(2)(*) signal increased by 8.4% ± 4.1% during ischemia and returned to 3.25% ± 0.8% following reperfusion. Ischemic core T(2)(*) signal increase was 0.39% ± 0.47% during ischemia and 0.84% ± 1.8% on reperfusion. Penumbral CBF increased from 41.94 ± 13 to 116.5 ± 25 mL per 100 g per minute on reperfusion. On day 7, OC-defined penumbra gave a normal OC response and was located outside the infarct. T(2)(*) OC-defined penumbra recovered when CBF was restored, providing further validation of the utility of T(2)(*) OC for acute stroke management.


Assuntos
Imageamento por Ressonância Magnética/métodos , Oxigênio/metabolismo , Acidente Vascular Cerebral/diagnóstico , Animais , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Circulação Cerebrovascular/fisiologia , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/fisiopatologia , Imageamento por Ressonância Magnética/normas , Masculino , Ratos , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
5.
J Cereb Blood Flow Metab ; 31(8): 1778-87, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21559032

RESUMO

Accurate identification of ischemic penumbra will improve stroke patient selection for reperfusion therapies and clinical trials. Current magnetic resonance imaging (MRI) techniques have limitations and lack validation. Oxygen challenge T(2)(*) MRI (T(2)(*) OC) uses oxygen as a biotracer to detect tissue metabolism, with penumbra displaying the greatest T(2)(*) signal change during OC. [(14)C]2-deoxyglucose (2-DG) autoradiography was combined with T(2)(*) OC to determine metabolic status of T(2)(*)-defined penumbra. Permanent middle cerebral artery occlusion was induced in anesthetized male Sprague-Dawley rats (n=6). Ischemic injury and perfusion deficit were determined by diffusion- and perfusion-weighted imaging, respectively. At 147 ± 32 minutes after stroke, T(2)(*) signal change was measured during a 5-minute 100% OC, immediately followed by 125 µCi/kg 2-DG, intravenously. Magnetic resonance images were coregistered with the corresponding autoradiograms. Regions of interest were located within ischemic core, T(2)(*)-defined penumbra, equivalent contralateral structures, and a region of hyperglycolysis. A T(2)(*) signal increase of 9.22% ± 3.9% (mean ± s.d.) was recorded in presumed penumbra, which displayed local cerebral glucose utilization values equivalent to contralateral cortex. T(2)(*) signal change was negligible in ischemic core, 3.2% ± 0.78% in contralateral regions, and 1.41% ± 0.62% in hyperglycolytic tissue, located outside OC-defined penumbra and within the diffusion abnormality. The results support the utility of OC-MRI to detect viable penumbral tissue following stroke.


Assuntos
Imageamento por Ressonância Magnética/métodos , Oxigênio/metabolismo , Acidente Vascular Cerebral/diagnóstico , Animais , Autorradiografia , Encéfalo/metabolismo , Desoxiglucose , Glicólise , Imageamento por Ressonância Magnética/normas , Masculino , Metabolismo , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA