Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067805

RESUMO

The early-stage diagnosis of cancer is a crucial clinical need. The inadequacies of surgery tissue biopsy have prompted a transition to a less invasive profiling of molecular biomarkers from biofluids, known as liquid biopsy. Exosomes are phospholipid bilayer vesicles present in many biofluids with a biologically active cargo, being responsible for cell-to-cell communication in biological systems. An increase in their excretion and changes in their cargo are potential diagnostic biomarkers for an array of diseases, including cancer, and they constitute a promising analyte for liquid biopsy. The number of exosomes released, the morphological properties, the membrane composition, and their content are highly related to the physiological and pathological states. The main analytical challenge to establishing liquid biopsy in clinical practice is the development of biosensors able to detect intact exosomes concentration and simultaneously analyze specific membrane biomarkers and those contained in their cargo. Before analysis, exosomes also need to be isolated from biological fluids. Microfluidic systems can address several issues present in conventional methods (i.e., ultracentrifugation, size-exclusion chromatography, ultrafiltration, and immunoaffinity capture), which are time-consuming and require a relatively high amount of sample; in addition, they can be easily integrated with biosensing systems. A critical review of emerging microfluidic-based devices for integrated biosensing approaches and following the major analytical need for accurate diagnostics is presented here. The design of a new miniaturized biosensing system is also reported. A device based on hollow-fiber flow field-flow fractionation followed by luminescence-based immunoassay is applied to isolate intact exosomes and characterize their cargo as a proof of concept for colon cancer diagnosis.


Assuntos
Neoplasias do Colo , Exossomos , Humanos , Exossomos/química , Microfluídica , Biópsia Líquida/métodos , Biomarcadores/análise , Neoplasias do Colo/diagnóstico , Comunicação Celular
2.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269601

RESUMO

Luciferases catalyze light-emitting reactions that produce a rainbow of colors from their substrates (luciferins), molecular oxygen, and often additional cofactors. These bioluminescence (BL) systems have afforded an incredible variety of basic research and medical applications. Driven by the importance of BL-based non-invasive animal imaging (BLI) applications, especially in support of cancer research, new BL systems have been developed by engineering beetle luciferase (Luc) variants and synthetic substrate combinations to produce red to near-infrared (nIR) light to improve imaging sensitivity and resolution. To stimulate the application of BLI research and advance the development of improved reagents for BLI, we undertook a systematic comparison of the spectroscopic and BL properties of seven beetle Lucs with LH2 and nine substrates, which included two new quinoline ring-containing analogs. The results of these experiments with purified Luc enzymes in vitro and in live HEK293T cells transfected with luc genes have enabled us to identify Luc/analog combinations with improved properties compared to those previously reported and to provide live cell BL data that may be relevant to in vivo imaging applications. Additionally, we found strong candidate enzyme/substrate pairs for in vitro biomarker applications requiring nIR sources with minimal visible light components. Notably, one of our new substrates paired with a previously developed Luc variant was demonstrated to be an excellent in vitro source of nIR and a potentially useful BL system for improved resolution in BLI.


Assuntos
Besouros , Luciferinas , Animais , Luciferina de Vaga-Lumes/química , Células HEK293 , Humanos , Raios Infravermelhos , Luciferases/química , Luciferases/genética , Medições Luminescentes/métodos
3.
Anal Chem ; 93(20): 7388-7393, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33973781

RESUMO

The availability of portable analytical devices for on-site monitoring and rapid detection of analytes of forensic, environmental, and clinical interest is vital. We report the development of a portable device for the detection of biochemiluminescence relying on silicon photomultiplier (SiPM) technology, called LuminoSiPM, which includes a 3D printed sample holder that can be adapted for both liquid samples and paper-based biosensing. We performed a comparison of analytical performance in terms of detectability with a benchtop luminometer, a portable cooled charge-coupled device (CCD sensor), and smartphone-integrated complementary metal oxide semiconductor (CMOS) sensors. As model systems, we used two luciferase/luciferin systems emitting at different wavelengths using purified protein solutions: the green-emitting P. pyralis mutant Ppy-GR-TS (λmax 550 nm) and the blue-emitting NanoLuc (λmax 460 nm). A limit of detection of 9 femtomoles was obtained for NanoLuc luciferase, about 2 and 3 orders of magnitude lower than that obtained with the portable CCD camera and with the smartphone, respectively. A proof-of-principle forensic application of LuminoSiPM is provided, exploiting an origami chemiluminescent paper-based sensor for acetylcholinesterase inhibitors, showing high potential for this portable low-cost device for on-site applications with adequate sensitivity for detecting low light intensities in critical fields.


Assuntos
Técnicas Biossensoriais , Luminescência , Luz , Luciferases , Smartphone
4.
Sensors (Basel) ; 21(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572727

RESUMO

In recent years, there has been an increasing demand for predictive and sensitive in vitro tools for drug discovery. Split complementation assays have the potential to enlarge the arsenal of in vitro tools for compound screening, with most of them relying on well-established reporter gene assays. In particular, ligand-induced complementation of split luciferases is emerging as a suitable approach for monitoring protein-protein interactions. We hereby report an intracellular nanosensor for the screening of compounds with androgenic activity based on a split NanoLuc reporter. We also confirm the suitability of using 3D spheroids of Human Embryonic Kidney (HEK-293) cells for upgrading the 2D cell-based assay. A limit of detection of 4 pM and a half maximal effective concentration (EC50) of 1.7 ± 0.3 nM were obtained for testosterone with HEK293 spheroids. This genetically encoded nanosensor also represents a new tool for real time imaging of the activation state of the androgen receptor, thus being suitable for analysing molecules with androgenic activity, including new drugs or endocrine disrupting molecules.


Assuntos
Androgênios , Medições Luminescentes , Nanotecnologia , Receptores Androgênicos , Genes Reporter , Células HEK293 , Humanos , Luciferases/genética , Receptores Androgênicos/genética
5.
Analyst ; 145(8): 2841-2853, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32196042

RESUMO

The customization of disease treatment focused on genetic, environmental and lifestyle factors of individual patients, including tailored medical decisions and treatments, is identified as precision medicine. This approach involves the combination of various aspects such as the collection and processing of a large amount of data, the selection of optimized and personalized drug dosage for each patient and the development of selective and reliable analytical tools for the monitoring of clinical, genetic and environmental parameters. In this context, miniaturized, compact and ultrasensitive bioanalytical devices play a crucial role for achieving the goals of personalized medicine. In this review, the latest analytical technologies suitable for providing portable and easy-to-use diagnostic tools in clinical settings will be discussed, highlighting new opportunities arising from nanotechnologies, offering peculiar perspectives and opportunities for precision medicine.


Assuntos
Técnicas Biossensoriais/métodos , Nanoestruturas/química , Medicina de Precisão/métodos , Técnicas Biossensoriais/instrumentação , Humanos , Papel , Medicina de Precisão/instrumentação , Smartphone , Dispositivos Eletrônicos Vestíveis
6.
Scand J Clin Lab Invest ; 80(5): 395-400, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32323600

RESUMO

Bile acids are known to pass the blood-brain barrier and are present at low concentrations in the brain. In a previous work, it was shown that subdural hematomas are enriched with bile acids and that the levels in such hematomas are higher than in the peripheral circulation. The mechanism behind this enrichment was never elucidated. Bile acids have a high affinity to albumin, and subdural hematomas contain almost as high albumin levels as the peripheral circulation. A subdural hematoma is encapsulated by fibrin which may allow passage of small molecules like bile acids. We hypothesized that bile acids originating from the circulation may be 'trapped' in the albumin in subdural hematomas. In the present work, we measured the conjugated and unconjugated primary bile acids cholic acid and chenodeoxycholic acid in subdural hematomas and in peripheral circulation of 24 patients. In most patients, the levels of both conjugated and free bile acids were higher in the hematomas than in the circulation, but the enrichment of unconjugated bile acids was markedly higher than that of conjugated bile acids. In patients with a known time interval between the primary bleeding and the operation, there was a correlation between this time period and the accumulation of bile acids. This relation was most obvious for unconjugated bile acids. The results are consistent with a continuous flux of bile acids, in particular unconjugated bile acids, across the blood-brain barrier. We discuss the possible physiological importance of bile acid accumulation in subdural hematomas.


Assuntos
Albuminas/metabolismo , Ácido Quenodesoxicólico/metabolismo , Ácido Cólico/metabolismo , Hematoma Subdural/metabolismo , Espaço Subdural/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Feminino , Fibrina/metabolismo , Hematoma Subdural/patologia , Hematoma Subdural/cirurgia , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Ligação Proteica , Espaço Subdural/irrigação sanguínea , Espaço Subdural/patologia , Espaço Subdural/cirurgia
7.
Anal Chem ; 91(23): 15284-15292, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31690077

RESUMO

Whole-cell and cell-free transcription-translation biosensors have recently become favorable alternatives to conventional detection methods, as they are cost-effective, environmental friendly, and easy to use. Importantly, the biological responses from the biosensors need to be converted into a physicochemical signal for easy detection, and a variety of genetic reporters have been employed for this purpose. Reporter gene selection is vital to a sensor performance and application success. However, it was largely based on trial and error with very few systematic side-by-side investigations reported. To address this bottleneck, here we compared eight reporters from three reporter categories, i.e., fluorescent (gfpmut3, deGFP, mCherry, mScarlet-I), colorimetric (lacZ), and bioluminescent (luxCDABE from Aliivibrio fischeri and Photorhabdus luminescens, NanoLuc) reporters, under the control of two representative biosensors for mercury- and quorum-sensing molecules. Both whole-cell and cell-free formats were investigated to assess key sensing features including limit of detection (LOD), input and output dynamic ranges, response time, and output visibility. For both whole-cell biosensors, the lowest detectable concentration of analytes and the fastest responses were achieved with NanoLuc. Notably, we developed, to date, the most sensitive whole-cell mercury biosensor using NanoLuc as reporter, with an LOD ≤ 50.0 fM HgCl2 30 min postinduction. For cell-free biosensors, overall, NanoLuc and deGFP led to shorter response time and lower LOD than the others. This comprehensive profile of diverse reporters in a single setting provides a new important benchmark for reporter selection, aiding the rapid development of whole-cell and cell-free biosensors for various applications in the environment and health.


Assuntos
Técnicas Biossensoriais , Escherichia coli/genética , Genes Reporter/genética , Aliivibrio fischeri/genética , Escherichia coli/citologia , Mercúrio/análise , Photorhabdus/genética , Percepção de Quorum
8.
Anal Bioanal Chem ; 411(19): 4937-4949, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30972468

RESUMO

Cell-based assays utilizing reporter gene technology have been widely exploited for biosensing, as they provide useful information about the bioavailability and cell toxicity of target analytes. The long assay time due to gene transcription and translation is one of the main drawbacks of cell biosensors. We report the development of two yeast biosensors stably expressing human estrogen receptors α and ß and employing NanoLuc as the reporter protein to upgrade the widely used yeast estrogen screening (YES) assays. A viability control strain was also developed based on a chimeric green-emitting luciferase, PLG2, expressed for the first time in Saccharomycescerevisiae. Thanks to their brightness, NanoLuc and PLG2 provided excellent sensitivity, enabling the implementation of these biosensors into low-cost smartphone-based devices. The developed biosensors had a rapid (1 h) response and reported on (anti)estrogenic activity via human estrogen receptors α and ß as well as general sample toxicity. Under optimized conditions, we obtained LODs of 7.1 ± 0.4 nM and 0.38 ± 0.08 nM for E2 with nanoYESα and nanoYESß, respectively. As a proof of concept, we analyzed real samples from plants showing significant estrogenic activity or known to contain significant amounts of phytoestrogens. Graphical abstract.


Assuntos
Técnicas Biossensoriais , Disruptores Endócrinos/análise , Medições Luminescentes/métodos , Nanotecnologia , Saccharomyces cerevisiae/metabolismo , Smartphone , Genes Reporter , Limite de Detecção , Luciferases/genética , Medicago sativa/química , Extratos Vegetais/química , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Glycine max/química , Poluentes Químicos da Água/análise
9.
Anal Bioanal Chem ; 410(15): 3533-3545, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29411090

RESUMO

Berberine (BBR) is a natural alkaloid obtained from Berberis species plants, known for its protective effects against several diseases. Among the primary BBR metabolites, berberrubine (M1) showed the highest plasma concentration but few and conflicting data are available regarding its concentration in biological fluids related to its new potential activity on vascular cells. A combined analytical approach was applied to study biodistribution of M1 in comparison with BBR. The optimization of sample clean-up combined with a fully validated HPLC-ESI-MS/MS tailored for M1 allows sufficient detectability and accuracy to be reached in the different studied organs even when administered at low dose, comparable to that assumed by human. A predictive human vascular endothelial cell-based assay to measure intracellular xanthine oxidase has been developed and applied to study unexplored activities of M1 alongside other common activities. Results showed that oral M1 treatment exhibits higher plasma levels than BBR, reaching maximum concentration 400-fold higher than BBR (204 vs 0.5 ng/mL); moreover, M1 exhibits higher concentrations than BBR also in all the biological compartments analyzed. Noteworthy, the two compounds follow two different excretion routes: M1 through urine, while BBR through feces. In vitro studies demonstrated that M1 inhibited intracellular xanthine oxidase activity, one of the major sources of reactive oxygen species in vasculature, with an IC50 = 9.90 ± 0.01 µg/mL and reduced the expression of the inflammatory marker ICAM-1. These peculiar characteristics allow new perspectives to be opened up for the direct use of M1 instead of BBR in endothelial dysfunction treatment.


Assuntos
Anti-Infecciosos/farmacocinética , Anti-Inflamatórios/farmacocinética , Berberina/análogos & derivados , Berberina/farmacocinética , Inibidores Enzimáticos/farmacocinética , Animais , Anti-Infecciosos/análise , Anti-Infecciosos/metabolismo , Anti-Inflamatórios/análise , Anti-Inflamatórios/metabolismo , Berberina/análise , Berberina/metabolismo , Berberis/química , Cromatografia Líquida de Alta Pressão , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Ratos Wistar , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Distribuição Tecidual , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo
10.
Anal Bioanal Chem ; 410(3): 669-677, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29026940

RESUMO

Precision medicine is a new paradigm that combines diagnostic, imaging, and analytical tools to produce accurate diagnoses and therapeutic interventions tailored to the individual patient. This approach stands in contrast to the traditional "one size fits all" concept, according to which researchers develop disease treatments and preventions for an "average" patient without considering individual differences. The "one size fits all" concept has led to many ineffective or inappropriate treatments, especially for pathologies such as Alzheimer's disease and cancer. Now, precision medicine is receiving massive funding in many countries, thanks to its social and economic potential in terms of improved disease prevention, diagnosis, and therapy. Bioanalytical chemistry is critical to precision medicine. This is because identifying an appropriate tailored therapy requires researchers to collect and analyze information on each patient's specific molecular biomarkers (e.g., proteins, nucleic acids, and metabolites). In other words, precision diagnostics is not possible without precise bioanalytical chemistry. This Trend article highlights some of the most recent advances, including massive analysis of multilayer omics, and new imaging technique applications suitable for implementing precision medicine. Graphical abstract Precision medicine combines bioanalytical chemistry, molecular diagnostics, and imaging tools for performing accurate diagnoses and selecting optimal therapies for each patient.


Assuntos
Técnicas de Química Analítica/métodos , Biologia Computacional/métodos , Medicina de Precisão/métodos , Biomarcadores/análise , Bases de Dados Factuais , Diagnóstico por Imagem/métodos , Humanos , Sistemas Automatizados de Assistência Junto ao Leito
11.
Anal Bioanal Chem ; 410(4): 1237-1246, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28965124

RESUMO

The presence of chemicals with estrogenic activity in surface, groundwater, and drinking water poses serious concerns for potential threats to human health and aquatic life. At present, no sensitive portable devices are available for the rapid monitoring of such contamination. Here, we propose a cell-based mobile platform that exploits a newly developed bioluminescent yeast-estrogen screen (nanoYES) and a low-cost compact camera as light detector. Saccharomyces cerevisiae cells were genetically engineered with a yeast codon-optimized variant of NanoLuc luciferase (yNLucP) under the regulation of human estrogen receptor α activation. Ready-to-use 3D-printed cartridges with immobilized cells were prepared by optimizing a new procedure that enables to produce alginate slices with good reproducibility. A portable device was obtained exploiting a compact camera and wireless connectivity enabling a rapid and quantitative evaluation (1-h incubation at room temperature) of total estrogenic activity in small sample volumes (50 µL) with a LOD of 0.08 nM for 17ß-estradiol. The developed portable analytical platform was applied for the evaluation of water samples spiked with different chemicals known to have estrogen-like activity. Thanks to the high sensitivity of the newly developed yeast biosensor and the possibility to wireless connect the camera with any smartphone model, the developed configuration is more versatile than previously reported smartphone-based devices, and could find application for on-site analysis of endocrine disruptors. Graphical abstract Wireless effect-based detection of endocrine-disrupting chemicals with nanoYES platform.


Assuntos
Técnicas Biossensoriais , Disruptores Endócrinos/análise , Estrogênios/análise , Fotografação/instrumentação , Saccharomyces cerevisiae/metabolismo , Poluentes Químicos da Água/análise , Tecnologia sem Fio , Luminescência , Impressão Tridimensional
12.
Angew Chem Int Ed Engl ; 57(25): 7385-7389, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29637676

RESUMO

The point-of-care testing concept has been exploited to design and develop portable and cheap bioanalytical systems that can be used on-site by conservators. These systems employ lateral flow immunoassays to simultaneously detect two proteins (ovalbumin and collagen) in artworks. For an in-depth study on the application of these portable biosensors, both chemiluminescent and colorimetric detections were developed and compared in terms of sensitivity and feasibility. The chemiluminescent system displayed the best analytical performance (that is, two orders of magnitude lower limits of detection than the colorimetric system). To simplify its use, a disposable cartridge was designed ad hoc for this specific application. These results highlight the enormous potential of these inexpensive, easy-to-use, and minimally invasive diagnostic tools for conservators in the cultural heritage field.


Assuntos
Arte , Técnicas Biossensoriais , Cultura , Miniaturização , Colorimetria/instrumentação , Imunoensaio , Limite de Detecção , Luminescência , Sistemas Automatizados de Assistência Junto ao Leito
13.
Proteomics ; 17(15-16)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28727291

RESUMO

Microgravity is one of the most important features in spaceflight. Previous evidence from in-vitro studies has shown that significant changes occur under simulated microgravity. For this reason, human colon adenocarcinoma Caco-2 cells were selected as cell model of intestinal epithelial barrier and their response to altered gravity conditions was investigated, especially on the protein level. In this study, we combined label-free shotgun proteomics and bioluminescent reporter gene assays to identify key proteins and pathways involved in the response of Caco-2 cells under reference and microgravity conditions. A two-dimensional clinostat was modified with 3D-printed adaptors to hold conventional T25 culture flasks. The comparative proteome analysis led to identify 38 and 26 proteins differently regulated by simulated microgravity after 48 and 72 h, respectively. Substantial fractions of these proteins are involved in regulation, cellular and metabolic processes and localization. Bioluminescent reporter gene assays were carried out to investigate microgavity-induced alterations on the transcriptional regulation of key targets, such as NF-kB pathway and CYP27A1. While no significant difference was found in the basal transcription, a lower NF-kB basal activation in simulated microgravity conditions was reported, corroborating the hypothesis of reduced immunity in microgravity conditions.


Assuntos
Genes Reporter , Medições Luminescentes/métodos , Proteínas de Neoplasias/metabolismo , Proteômica/métodos , Simulação de Ausência de Peso/métodos , Células CACO-2 , Humanos , Proteoma/análise
14.
Am J Physiol Gastrointest Liver Physiol ; 312(6): G550-G558, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28360029

RESUMO

Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1ß, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions.NEW & NOTEWORTHY On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metabolism of UDCA is necessary for the full expression of its protective effects against colonic inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/prevenção & controle , Colo/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Ácido Litocólico/farmacologia , Ácido Ursodesoxicólico/farmacologia , Animais , Bactérias/metabolismo , Biotransformação , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Citocinas/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Microbioma Gastrointestinal , Células HT29 , Humanos , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Masculino , Camundongos Endogâmicos C57BL , Fatores de Tempo , Ácido Ursodesoxicólico/análogos & derivados , Ácido Ursodesoxicólico/metabolismo
15.
Anal Biochem ; 534: 36-39, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28687486

RESUMO

Beetle luciferases have been adapted for live cell imaging where bioluminescence is dependent on the cellular availability of ATP, O2, and added luciferin. Previous Photinus pyralis red-emitting variants with high Km values for ATP have performed disappointingly in live cells despite having much higher relative specific activities than enzymes like Click Beetle Red (CBR). We engineered a luciferase variant PLR3 having a Km value for ATP similar to CBR and ∼2.6-fold higher specific activity. The red-emitting PLR3 was ∼2.5-fold brighter than CBR in living HEK293T and HeLa cells, an improvement consistent with the importance of the Km value in low ATP environments.


Assuntos
Trifosfato de Adenosina/análise , Luciferases de Vaga-Lume/química , Medições Luminescentes , Animais , Vaga-Lumes , Células HEK293 , Células HeLa , Humanos , Luciferases de Vaga-Lume/metabolismo
16.
J Antimicrob Chemother ; 71(5): 1148-58, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26888912

RESUMO

OBJECTIVES: As most available antimalarial drugs are ineffective against the Plasmodium falciparum transmission stages, new drugs against the parasite's gametocytes are urgently needed to combat malaria globally. The unique biology of gametocytes requires assays that need to be specific, to faithfully monitor anti-gametocyte activity, and to be easy to perform, cheap and scalable to high-throughput screening (HTS). METHODS: We developed an HTS cell-based assay with P. falciparum gametocytes specifically expressing a potent luciferase. To confirm HTS hit activity for several parasite genotypes, the luciferase assay and the gametocyte lactate dehydrogenase (LDH) assay, usable on any parasite isolate, were compared by screening antimalarial drugs and determining IC50 values of anti-gametocyte hits from the 'Malaria Box' against early- and late-stage gametocytes. RESULTS: Comparison of the two assays, conducted on the early and on late gametocyte stages, revealed an excellent correlation (R(2) > 0.9) for the IC50 values obtained by the respective readouts. Differences in susceptibility to drugs and compounds between the two parasite developmental stages were consistently measured in both assays. CONCLUSIONS: This work indicates that the luciferase and gametocyte LDH assays are interchangeable and that their specific advantages can be exploited to design an HTS pipeline leading to new transmission-blocking compounds. Results from these assays consistently defined a gametocyte chemical susceptibility profile, relevant to the planning of future drug discovery strategies.


Assuntos
Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Plasmodium falciparum/efeitos dos fármacos , Técnicas Citológicas/métodos , Genes Reporter , Ensaios de Triagem em Larga Escala/métodos , Humanos , Concentração Inibidora 50 , L-Lactato Desidrogenase/análise , Luciferases/análise , Plasmodium falciparum/enzimologia , Coloração e Rotulagem
17.
Chemistry ; 22(50): 18156-18168, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27798823

RESUMO

Great interest in new thermochemiluminescent (TCL) molecules, for example, in bioanalytical assays, has prompted the design and synthesis of a small library of more than 30 olefins to be subjected to photooxygenation, with the aim of obtaining new 1,2-dioxetane-based TCL labels with optimized properties. Fluorine atoms on the acridan system remarkably stabilize 1,2-dioxetanes when they are located in the 3- and/or 6-position (4 h and 4 i). On the other hand, 2,7-difluorinated acridan dioxetane (4 j) showed a significantly enhanced fluorescence quantum yield with respect to the unsubstituted dioxetane (4 a). Some of the synthesized olefins did not undergo singlet oxygen addition and a rationale was sought to ease the photooxygenation step, leading to the TCL dioxetanes. A chemometric approach has been adopted to exploit principal component analysis and linear discriminant analysis of the structural and electronic molecular descriptors obtained by DFT optimizations of olefins 3. This approach allows the steric and electronic parameters that govern dioxetane formation to be revealed.

18.
Anal Bioanal Chem ; 408(30): 8859-8868, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27853830

RESUMO

The availability of smartphones with high-performance digital image sensors and processing power has completely reshaped the landscape of point-of-need analysis. Thanks to the high maturity level of reporter gene technology and the availability of several bioluminescent proteins with improved features, we were able to develop a bioluminescence smartphone-based biosensing platform exploiting the highly sensitive NanoLuc luciferase as reporter. A 3D-printed smartphone-integrated cell biosensor based on genetically engineered Hek293T cells was developed. Quantitative assessment of (anti)-inflammatory activity and toxicity of liquid samples was performed with a simple and rapid add-and-measure procedure. White grape pomace extracts, known to contain several bioactive compounds, were analyzed, confirming the suitability of the smartphone biosensing platform for analysis of untreated complex biological matrices. Such approach could meet the needs of small medium enterprises lacking fully equipped laboratories for first-level safety tests and rapid screening of new bioactive products. Graphical abstract Smartphone-based bioluminescence cell biosensor.


Assuntos
Anti-Inflamatórios/farmacologia , Técnicas Biossensoriais/instrumentação , Luciferases/genética , Medições Luminescentes/instrumentação , Extratos Vegetais/farmacologia , Smartphone/instrumentação , Anti-Inflamatórios/química , Desenho de Equipamento , Genes Reporter , Engenharia Genética , Células HEK293 , Humanos , Limite de Detecção , Luciferases/metabolismo , Extratos Vegetais/química , Reprodutibilidade dos Testes , Vitis/química
19.
Anal Bioanal Chem ; 408(26): 7367-77, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27520323

RESUMO

An integrated sensing system is presented for the first time, where a metal oxide semiconductor sensor-based electronic olfactory system (MOS array), employed for pathogen bacteria identification based on their volatile organic compound (VOC) characterisation, is assisted by a preliminary separative technique based on gravitational field-flow fractionation (GrFFF). In the integrated system, a preliminary step using GrFFF fractionation of a complex sample provided bacteria-enriched fractions readily available for subsequent MOS array analysis. The MOS array signals were then analysed employing a chemometric approach using principal components analysis (PCA) for a first-data exploration, followed by linear discriminant analysis (LDA) as a classification tool, using the PCA scores as input variables. The ability of the GrFFF-MOS system to distinguish between viable and non-viable cells of the same strain was demonstrated for the first time, yielding 100 % ability of correct prediction. The integrated system was also applied as a proof of concept for multianalyte purposes, for the detection of two bacterial strains (Escherichia coli O157:H7 and Yersinia enterocolitica) simultaneously present in artificially contaminated milk samples, obtaining a 100 % ability of correct prediction. Acquired results show that GrFFF band slicing before MOS array analysis can significantly increase reliability and reproducibility of pathogen bacteria identification based on their VOC production, simplifying the analytical procedure and largely eliminating sample matrix effects. The developed GrFFF-MOS integrated system can be considered a simple straightforward approach for pathogen bacteria identification directly from their food matrix. Graphical abstract An integrated sensing system is presented for pathogen bacteria identification in food, in which field-flow fractionation is exploited to prepare enriched cell fractions prior to their analysis by electronic olfactory system analysis.


Assuntos
Nariz Eletrônico , Escherichia coli O157/isolamento & purificação , Análise de Alimentos/métodos , Fracionamento por Campo e Fluxo/métodos , Compostos Orgânicos Voláteis/análise , Yersinia enterocolitica/isolamento & purificação , Desenho de Equipamento , Infecções por Escherichia coli/microbiologia , Escherichia coli O157/citologia , Análise de Alimentos/instrumentação , Microbiologia de Alimentos/instrumentação , Microbiologia de Alimentos/métodos , Fracionamento por Campo e Fluxo/instrumentação , Humanos , Viabilidade Microbiana , Semicondutores , Yersiniose/microbiologia , Yersinia enterocolitica/citologia
20.
Anal Bioanal Chem ; 408(30): 8869-8879, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27783125

RESUMO

A novel and disposable cartridge for chemiluminescent (CL)-lateral flow immunoassay (LFIA) with integrated amorphous silicon (a-Si:H) photosensors array was developed and applied to quantitatively detect human serum albumin (HSA) in urine samples. The presented analytical method is based on an indirect competitive immunoassay using horseradish peroxidase (HRP) as a tracer, which is detected by adding the luminol/enhancer/hydrogen peroxide CL cocktail. The system comprises an array of a-Si:H photosensors deposited on a glass substrate, on which a PDMS cartridge that houses the LFIA strip and the reagents necessary for the CL immunoassay was optically coupled to obtain an integrated analytical device controlled by a portable read-out electronics. The method is simple and fast with a detection limit of 2.5 mg L-1 for HSA in urine and a dynamic range up to 850 mg L-1, which is suitable for measuring physiological levels of HSA in urine samples and their variation in different diseases (micro- and macroalbuminuria). The use of CL detection allowed accurate and objective analyte quantification in a dynamic range that extends from femtomoles to picomoles. The analytical performances of this integrated device were found to be comparable with those obtained using a charge-coupled device (CCD) as a reference off-chip detector. These results demonstrate that integrating the a-Si:H photosensors array with CL-LFIA technique provides compact, sensitive and low-cost systems for CL-based bioassays with a wide range of applications for in-field and point-of-care bioanalyses. Graphical Abstract A novel integrated portable device was developed for direct quantitative detection of human serum albumin (HSA) in urine samples, exploiting a chemiluminescence lateral flow immunoassay (LFIA). The device comprises a cartridge that holds the LFIA strip and all the reagents necessary for the analysis, an array of amorphous silicon photosensors, and a custom read-out electronics.


Assuntos
Albuminúria/urina , Imunoensaio/métodos , Medições Luminescentes/instrumentação , Albumina Sérica Humana/urina , Silício/química , Albuminúria/diagnóstico , Ligação Competitiva , Desenho de Equipamento , Peroxidase do Rábano Silvestre/química , Humanos , Peróxido de Hidrogênio/química , Imunoensaio/instrumentação , Limite de Detecção , Luminol/química , Sistemas Automatizados de Assistência Junto ao Leito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA