Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Cell ; 81(8): 1749-1765.e8, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33657400

RESUMO

Acetylation of lysine 16 on histone H4 (H4K16ac) is catalyzed by histone acetyltransferase KAT8 and can prevent chromatin compaction in vitro. Although extensively studied in Drosophila, the functions of H4K16ac and two KAT8-containing protein complexes (NSL and MSL) are not well understood in mammals. Here, we demonstrate a surprising complex-dependent activity of KAT8: it catalyzes H4K5ac and H4K8ac as part of the NSL complex, whereas it catalyzes the bulk of H4K16ac as part of the MSL complex. Furthermore, we show that MSL complex proteins and H4K16ac are not required for cell proliferation and chromatin accessibility, whereas the NSL complex is essential for cell survival, as it stimulates transcription initiation at the promoters of housekeeping genes. In summary, we show that KAT8 switches catalytic activity and function depending on its associated proteins and that, when in the NSL complex, it catalyzes H4K5ac and H4K8ac required for the expression of essential genes.


Assuntos
Histona Acetiltransferases/genética , Homeostase/genética , Transcrição Gênica/genética , Acetilação , Animais , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/genética , Proliferação de Células/genética , Cromatina/genética , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Células K562 , Lisina/genética , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Células THP-1
2.
Addict Biol ; 26(1): e12816, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31373129

RESUMO

Epigenetic enzymes oversee long-term changes in gene expression by integrating genetic and environmental cues. While there are hundreds of enzymes that control histone and DNA modifications, their potential roles in substance abuse and alcohol dependence remain underexplored. A few recent studies have suggested that epigenetic processes could underlie transcriptomic and behavioral hallmarks of alcohol addiction. In the present study, we sought to identify epigenetic enzymes in the brain that are dysregulated during protracted abstinence as a consequence of chronic and intermittent alcohol exposure. Through quantitative mRNA expression analysis of over 100 epigenetic enzymes, we identified 11 that are significantly altered in alcohol-dependent rats compared with controls. Follow-up studies of one of these enzymes, the histone demethylase KDM6B, showed that this enzyme exhibits region-specific dysregulation in the prefrontal cortex and nucleus accumbens of alcohol-dependent rats. KDM6B was also upregulated in the human alcoholic brain. Upregulation of KDM6B protein in alcohol-dependent rats was accompanied by a decrease of trimethylation levels at histone H3, lysine 27 (H3K27me3), consistent with the known demethylase specificity of KDM6B. Subsequent epigenetic (chromatin immunoprecipitation [ChIP]-sequencing) analysis showed that alcohol-induced changes in H3K27me3 were significantly enriched at genes in the IL-6 signaling pathway, consistent with the well-characterized role of KDM6B in modulation of inflammatory responses. Knockdown of KDM6B in cultured microglial cells diminished IL-6 induction in response to an inflammatory stimulus. Our findings implicate a novel KDM6B-mediated epigenetic signaling pathway integrated with inflammatory signaling pathways that are known to underlie the development of alcohol addiction.


Assuntos
Alcoolismo/genética , Histona Desmetilases com o Domínio Jumonji/genética , Animais , Células Cultivadas , Epigênese Genética , Etanol/metabolismo , Histona Desmetilases/genética , Histonas/metabolismo , Humanos , Córtex Pré-Frontal/metabolismo , Ratos , Transdução de Sinais , Regulação para Cima
3.
Elife ; 122023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37204295

RESUMO

In nucleosomes, histone N-terminal tails exist in dynamic equilibrium between free/accessible and collapsed/DNA-bound states. The latter state is expected to impact histone N-termini availability to the epigenetic machinery. Notably, H3 tail acetylation (e.g. K9ac, K14ac, K18ac) is linked to increased H3K4me3 engagement by the BPTF PHD finger, but it is unknown if this mechanism has a broader extension. Here, we show that H3 tail acetylation promotes nucleosomal accessibility to other H3K4 methyl readers, and importantly, extends to H3K4 writers, notably methyltransferase MLL1. This regulation is not observed on peptide substrates yet occurs on the cis H3 tail, as determined with fully-defined heterotypic nucleosomes. In vivo, H3 tail acetylation is directly and dynamically coupled with cis H3K4 methylation levels. Together, these observations reveal an acetylation 'chromatin switch' on the H3 tail that modulates read-write accessibility in nucleosomes and resolves the long-standing question of why H3K4me3 levels are coupled with H3 acetylation.


Assuntos
Cromatina , Histonas , Histonas/metabolismo , Nucleossomos , Metilação , Acetilação
4.
Methods Mol Biol ; 2261: 323-343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33420999

RESUMO

Chromatin immunoprecipitation (ChIP) is a method used to examine the genomic localization of a target of interest (e.g., proteins, protein posttranslational modifications, or DNA elements). As ChIP provides a snapshot of in vivo DNA-protein interactions, it lends insight to the mechanisms of gene expression and genome regulation. This chapter provides a detailed protocol focused on native-ChIP (N-ChIP), a robust approach to profile stable DNA-protein interactions. We also describe best practices for ChIP , including defined controls to ensure specific and efficient target enrichment and methods for data normalization.


Assuntos
Imunoprecipitação da Cromatina , Cromatina/metabolismo , DNA/metabolismo , Histonas/metabolismo , Animais , Células Cultivadas , Cromatina/genética , DNA/genética , Humanos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Fluxo de Trabalho
5.
Epigenetics Chromatin ; 13(1): 3, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980037

RESUMO

BACKGROUND: Plant homeodomain (PHD) fingers are central "readers" of histone post-translational modifications (PTMs) with > 100 PHD finger-containing proteins encoded by the human genome. Many of the PHDs studied to date bind to unmodified or methylated states of histone H3 lysine 4 (H3K4). Additionally, many of these domains, and the proteins they are contained in, have crucial roles in the regulation of gene expression and cancer development. Despite this, the majority of PHD fingers have gone uncharacterized; thus, our understanding of how these domains contribute to chromatin biology remains incomplete. RESULTS: We expressed and screened 123 of the annotated human PHD fingers for their histone binding preferences using reader domain microarrays. A subset (31) of these domains showed strong preference for the H3 N-terminal tail either unmodified or methylated at H3K4. These H3 readers were further characterized by histone peptide microarrays and/or AlphaScreen to comprehensively define their H3 preferences and PTM cross-talk. CONCLUSIONS: The high-throughput approaches utilized in this study establish a compendium of binding information for the PHD reader family with regard to how they engage histone PTMs and uncover several novel reader domain-histone PTM interactions (i.e., PHRF1 and TRIM66). This study highlights the usefulness of high-throughput analyses of histone reader proteins as a means of understanding how chromatin engagement occurs biochemically.


Assuntos
Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Sítios de Ligação , Histonas/química , Proteínas de Homeodomínio/química , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Metilação , Ligação Proteica , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA