Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Genes Dev ; 30(24): 2710-2723, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087715

RESUMO

Mutations in the U2 snRNP component SF3B1 are prominent in myelodysplastic syndromes (MDSs) and other cancers and have been shown recently to alter branch site (BS) or 3' splice site selection in splicing. However, the molecular mechanism of altered splicing is not known. We show here that hsh155 mutant alleles in Saccharomyces cerevisiae, counterparts of SF3B1 mutations frequently found in cancers, specifically change splicing of suboptimal BS pre-mRNA substrates. We found that Hsh155p interacts directly with Prp5p, the first ATPase that acts during spliceosome assembly, and localized the interacting regions to HEAT (Huntingtin, EF3, PP2A, and TOR1) motifs in SF3B1 associated with disease mutations. Furthermore, we show that mutations in these motifs from both human disease and yeast genetic screens alter the physical interaction with Prp5p, alter branch region specification, and phenocopy mutations in Prp5p. These and other data demonstrate that mutations in Hsh155p and Prp5p alter splicing because they change the direct physical interaction between Hsh155p and Prp5p. This altered physical interaction results in altered loading (i.e., "fidelity") of the BS-U2 duplex into the SF3B complex during prespliceosome formation. These results provide a mechanistic framework to explain the consequences of intron recognition and splicing of SF3B1 mutations found in disease.


Assuntos
RNA Helicases DEAD-box/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos/genética , RNA Helicases DEAD-box/genética , Humanos , Íntrons/genética , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica/genética , Precursores de RNA/metabolismo , Splicing de RNA/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/genética
2.
J Biol Chem ; 288(47): 34081-34096, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24106281

RESUMO

Mammalian genomes encode two provitamin A-converting enzymes as follows: the ß-carotene-15,15'-oxygenase (BCO1) and the ß-carotene-9',10'-oxygenase (BCO2). Symmetric cleavage by BCO1 yields retinoids (ß-15'-apocarotenoids, C20), whereas eccentric cleavage by BCO2 produces long-chain (>C20) apocarotenoids. Here, we used genetic and biochemical approaches to clarify the contribution of these enzymes to provitamin A metabolism. We subjected wild type, Bco1(-/-), Bco2(-/-), and Bco1(-/-)Bco2(-/-) double knock-out mice to a controlled diet providing ß-carotene as the sole source for apocarotenoid production. This study revealed that BCO1 is critical for retinoid homeostasis. Genetic disruption of BCO1 resulted in ß-carotene accumulation and vitamin A deficiency accompanied by a BCO2-dependent production of minor amounts of ß-apo-10'-carotenol (APO10ol). We found that APO10ol can be esterified and transported by the same proteins as vitamin A but with a lower affinity and slower reaction kinetics. In wild type mice, APO10ol was converted to retinoids by BCO1. We also show that a stepwise cleavage by BCO2 and BCO1 with APO10ol as an intermediate could provide a mechanism to tailor asymmetric carotenoids such as ß-cryptoxanthin for vitamin A production. In conclusion, our study provides evidence that mammals employ both carotenoid oxygenases to synthesize retinoids from provitamin A carotenoids.


Assuntos
Carotenoides/metabolismo , Dioxigenases/metabolismo , Vitamina A/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/metabolismo , Animais , Carotenoides/genética , Criptoxantinas , Dioxigenases/genética , Células Hep G2 , Humanos , Camundongos , Camundongos Knockout , Vitamina A/genética , Deficiência de Vitamina A/enzimologia , Deficiência de Vitamina A/genética , Xantofilas/genética , Xantofilas/metabolismo , beta Caroteno/genética , beta Caroteno/metabolismo , beta-Caroteno 15,15'-Mono-Oxigenase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA