Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Res ; 1073-1074: 220-8, 2006 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-16427617

RESUMO

Serotonin-N-acetyltransferase (arylalkylamine-N-acetyltransferase, AANAT) is the key enzyme in the generation of melatonin rhythms in the pineal gland and retinal photoreceptors. Rhythmic AANAT activity drives rhythmic melatonin production in these tissues. Two AANATs, AANAT1 and AANAT2, are present in teleost fish species. Different spatial expression patterns, enzyme kinetics and substrate preferences suggest that they may have different functions. Enzyme activity assays revealed that recombinant seabream and zebrafish AANAT1s, but not AANAT2s, acetylate dopamine with kinetic characteristics that are similar to those for tryptamine acetylation. High performance liquid chromatography analysis of seabream retinal extracts indicated the presence of N-acetyldopamine. Time-of-day analysis of retinal AANAT activity and concentration of melatonin, dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and N-acetyldopamine revealed a daily pattern of retinal melatonin and N-acetyldopamine production that are correlated with retinal AANAT1 activity. In situ hybridization analysis of seabream retinal sections indicated that tyrosine hydroxylase is expressed in the inner nuclear layer (INL) and that AANAT1 is expressed in the outer nuclear layer (ONL) and INL. Together, these observations point to the possibility that dopamine is acetylated by retinal AANAT1 in the INL. Such novel activity of AANAT1 may reflect an important function in the circadian physiology of the retina.


Assuntos
Arilalquilamina N-Acetiltransferase/fisiologia , Dopamina/metabolismo , Retina/enzimologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Análise de Variância , Animais , Cromatografia Líquida de Alta Pressão/métodos , Clonagem Molecular/métodos , Colorimetria/métodos , Eletroquímica/métodos , Expressão Gênica/fisiologia , Hibridização In Situ/métodos , Melatonina/metabolismo , Proteínas Recombinantes , Retina/anatomia & histologia , Dourada , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
2.
Comp Biochem Physiol B Biochem Mol Biol ; 136(4): 657-65, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14662292

RESUMO

Effects of environmental salinity and 17alpha-methyltestosterone (MT) on growth and oxygen consumption were examined in the tilapia, Oreochromis mossambicus. Yolk-sac fry were collected from brood stock in fresh water (FW). After yolk-sac absorption, they were assigned randomly to one of four groups: FW, MT treatment in FW, seawater (SW) and MT treatment in SW. All treatment groups were fed to satiation three times daily. The fish reared in SW (both control and MT-treated groups) grew significantly larger than either group in FW from day 43 throughout the experiment (195 days). The fish fed with MT added to their feed grew significantly larger than their respective controls from day 85 in FW and in SW until the end of the experiment. The routine metabolic rate (RMR) was determined monthly from month 2 (day 62) to month 5 (day 155). A significant negative correlation was seen between RMR and body mass in all treatment groups. Among fish of the same age, the SW-reared tilapia had significantly lower RMRs than the FW-reared fish. The MT-treated fish in SW showed significantly lower RMRs than the SW control group at months 3-5, whereas MT treatment in FW significantly increased the RMR at month 3. Comparison of regression lines between RMR and body mass indicates that MT treatment in FW caused a significant increase in oxygen consumption at a given mass of the fish, whereas MT treatment was without effect on RMR in SW-reared fish. These results clearly indicate that SW-rearing and MT treatment accelerate growth of tilapia, and that RMR decreases as fish size increased. It is also likely that the increased RMR and growth in MT-treated tilapia in FW may be due to the metabolic actions of MT, although the reason for the absence of MT treatment in SW is unclear.


Assuntos
Metiltestosterona/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Sais/farmacologia , Água do Mar/química , Tilápia/crescimento & desenvolvimento , Tilápia/metabolismo , Animais , Peso Corporal , Fatores de Tempo , Equilíbrio Hidroeletrolítico
3.
Gen Comp Endocrinol ; 138(2): 139-47, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15302263

RESUMO

Serotonin-N-acetyltransferase (arylalkylamine-N-acetyltransferase, AANAT) is the key enzyme in the biosynthesis of melatonin in the pineal gland and retinal photoreceptors. Rhythmic AANAT activity drives rhythmic melatonin production in these tissues. The presence of two AANATs, AANAT1 and AANAT2, has been previously demonstrated in three fresh water teleosts. This duality, the result of early gene duplication, is unique to teleost species. In this study, the cDNAs encoding for AANAT1 and AANAT2 were cloned from a marine fish, the gilthead seabream (sb, Sparus aurata). Northern blot hybridization analysis indicates that sbAANAT1 and sbAANAT2 are exclusively expressed in the retina and pineal gland, respectively. Bacterially expressed recombinant sbAANATs exhibit differential enzyme kinetics. Recombinant retinal sbAANAT1 has relatively high substrate affinity and low activity rate; it is inhibited by high substrate and product concentrations. In contrast, recombinant pineal sbAANAT2 exhibits low substrate affinity and high activity rate and is not inhibited by substrates or products. The two recombinant enzymes also exhibit differential substrate preference. Retinal sbAANAT1 acetylates a range of arylalkylamines while pineal sbAANAT2 preferentially acetylates indoleethylamines, especially serotonin. The different spatial expression patterns, enzyme kinetics, and substrate preferences of the two sbAANATs support the hypothesis that, as a consequence of gene duplication, teleosts have acquired two AANATs with different functions. Pineal AANAT2 specializes in the production of large amounts of melatonin that is released into the circulation and exerts an endocrine role. Retinal AANAT1, on the other hand, is involved in producing low levels of melatonin that execute a paracrine function. In addition, retinal AANAT1 may carry out an as yet unknown function that involves acetylation of arylalkylamines other than serotonin.


Assuntos
Arilalquilamina N-Acetiltransferase/metabolismo , Perciformes/fisiologia , Glândula Pineal/enzimologia , Retina/enzimologia , Sequência de Aminoácidos , Animais , Arilalquilamina N-Acetiltransferase/genética , Northern Blotting , Clonagem Molecular , DNA Complementar , Regulação da Expressão Gênica , Melatonina/biossíntese , Dados de Sequência Molecular , RNA Mensageiro/análise , Proteínas Recombinantes , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA