Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Heredity (Edinb) ; 127(4): 393-400, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34365470

RESUMO

Studying the consequences of hybridization on plant performance is insightful to understand the adaptive potential of populations, notably at local scales. Due to reduced effective recombination, predominantly selfing species are organized in highly homozygous multi-locus-genotypes (or lines) that accumulate genetic differentiation both among- and within-populations. This high level of homozygosity facilitates the dissection of the genetic basis of hybrid performance in highly selfing species, which gives insights into the mechanisms of reproductive isolation between lines. Here, we explored the fitness consequences of hybridization events between natural inbred lines of the predominantly selfing species Medicago truncatula, at both within- and among-populations scales. We found that hybridization has opposite effects pending on studied fitness proxies, with dry mass showing heterosis, and seed production showing outbreeding depression. Although we found significant patterns of heterosis and outbreeding depression, they did not differ significantly for within- compared to among-population crosses. Family-based analyses allowed us to determine that hybrid differentiation was mostly due to dominance and epistasis. Dominance and/or dominant epistatic interactions increased dry mass, while decreasing seed production, and recessive epistatic interactions mostly had a positive effect on both fitness proxies. Our results illustrate how genetic incompatibilities can accumulate at a very local scale among multi-locus-genotypes, and how non-additive genetic effects contribute to heterosis and outbreeding depression.


Assuntos
Deriva Genética , Vigor Híbrido , Cruzamentos Genéticos , Epistasia Genética , Genótipo , Hibridização Genética
2.
J Evol Biol ; 33(9): 1203-1215, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516463

RESUMO

Standing genetic variation is considered a major contributor to the adaptive potential of species. The low heritable genetic variation observed in self-fertilizing populations has led to the hypothesis that species with this mating system would be less likely to adapt. However, a non-negligible amount of cryptic genetic variation for polygenic traits, accumulated through negative linkage disequilibrium, could prove to be an important source of standing variation in self-fertilizing species. To test this hypothesis, we simulated populations under stabilizing selection subjected to an environmental change. We demonstrate that, when the mutation rate is high (but realistic), selfing populations are better able to store genetic variance than outcrossing populations through genetic associations, notably due to the reduced effective recombination rate associated with predominant selfing. Following an environmental shift, this diversity can be partially remobilized, which increases the additive variance and adaptive potential of predominantly (but not completely) selfing populations. In such conditions, despite initially lower observed genetic variance, selfing populations adapt as readily as outcrossing ones within a few generations. For low mutation rates, purifying selection impedes the storage of diversity through genetic associations, in which case, as previously predicted, the lower genetic variance of selfing populations results in lower adaptability compared to their outcrossing counterparts. The population size and the mutation rate are the main parameters to consider, as they are the best predictors of the amount of stored diversity in selfing populations. Our results and their impact on our knowledge of adaptation under high selfing rates are discussed.


Assuntos
Adaptação Biológica/genética , Variação Genética , Modelos Genéticos , Herança Multifatorial , Autofertilização , Evolução Biológica , Deriva Genética , Aptidão Genética , Mutação , Fenótipo , Seleção Genética
3.
Heredity (Edinb) ; 123(2): 176-191, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30670844

RESUMO

Predominantly selfing populations are expected to have reduced effective population sizes due to nonrandom sampling of gametes, demographic stochasticity (bottlenecks or extinction-recolonization), and large scale hitchhiking (reduced effective recombination). Thus, they are expected to display low genetic diversity, which was confirmed by empirical studies. The structure of genetic diversity in predominantly selfing species is dramatically different from outcrossing ones, with populations often dominated by one or a few multilocus genotypes (MLGs) coexisting with several rare genotypes. Therefore, multilocus diversity indices are relevant to describe diversity in selfing populations. Here, we use simulations to provide analytical expectations for multilocus indices and examine whether selfing alone can be responsible for the high-frequency MLGs persistent through time in the absence of selection. We then examine how combining single and multilocus indices of diversity may be insightful to distinguish the effects of selfing, population size, and more complex demographic events (bottlenecks, migration, admixture, or extinction-recolonization). Finally, we examine how temporal changes in MLG frequencies can be insightful to understand the evolutionary trajectory of a given population. We show that combinations of selfing and small demographic sizes can result in high-frequency MLGs, as observed in natural populations. We also show how different demographic scenarios can be distinguished by the parallel analysis of single and multilocus indices of diversity, and we emphasize the importance of temporal data for the study of predominantly selfing populations. Finally, the comparison of our simulations with empirical data on populations of Medicago truncatula confirms the pertinence of our simulation framework.


Assuntos
Variação Genética/genética , Animais , Evolução Biológica , Feminino , Genética Populacional , Genótipo , Masculino , Modelos Genéticos , Densidade Demográfica
4.
Mol Ecol ; 25(14): 3397-415, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27144929

RESUMO

Local climatic conditions likely constitute an important selective pressure on genes underlying important fitness-related traits such as flowering time, and in many species, flowering phenology and climatic gradients strongly covary. To test whether climate shapes the genetic variation on flowering time genes and to identify candidate flowering genes involved in the adaptation to environmental heterogeneity, we used a large Medicago truncatula core collection to examine the association between nucleotide polymorphisms at 224 candidate genes and both climate variables and flowering phenotypes. Unlike genome-wide studies, candidate gene approaches are expected to enrich for the number of meaningful trait associations because they specifically target genes that are known to affect the trait of interest. We found that flowering time mediates adaptation to climatic conditions mainly by variation at genes located upstream in the flowering pathways, close to the environmental stimuli. Variables related to the annual precipitation regime reflected selective constraints on flowering time genes better than the other variables tested (temperature, altitude, latitude or longitude). By comparing phenotype and climate associations, we identified 12 flowering genes as the most promising candidates responsible for phenological adaptation to climate. Four of these genes were located in the known flowering time QTL region on chromosome 7. However, climate and flowering associations also highlighted largely distinct gene sets, suggesting different genetic architectures for adaptation to climate and flowering onset.


Assuntos
Aclimatação/genética , Clima , Flores/fisiologia , Medicago truncatula/genética , África do Norte , Europa (Continente) , Genética Populacional , Medicago truncatula/fisiologia , Modelos Genéticos , Família Multigênica , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
5.
New Phytol ; 201(4): 1328-1342, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24283472

RESUMO

• The use of quantitative disease resistance (QDR) is a promising strategy for promoting durable resistance to plant pathogens, but genes involved in QDR are largely unknown. To identify genetic components and accelerate improvement of QDR in legumes to the root pathogen Aphanomyces euteiches, we took advantage of both the recently generated massive genomic data for Medicago truncatula and natural variation of this model legume. • A high-density (≈5.1 million single nucleotide polymorphisms (SNPs)) genome-wide association study (GWAS) was performed with both in vitro and glasshouse phenotyping data collected for 179 lines. • GWAS identified several candidate genes and pinpointed two independent major loci on the top of chromosome 3 that were detected in both phenotyping methods. Candidate SNPs in the most significant locus (σ(A)²= 23%) were in the promoter and coding regions of an F-box protein coding gene. Subsequent qRT-PCR and bioinformatic analyses performed on 20 lines demonstrated that resistance is associated with mutations directly affecting the interaction domain of the F-box protein rather than gene expression. • These results refine the position of previously identified QTL to specific candidate genes, suggest potential molecular mechanisms, and identify new loci explaining QDR against A. euteiches.


Assuntos
Aphanomyces/fisiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Proteínas F-Box/genética , Estudo de Associação Genômica Ampla , Medicago truncatula/genética , Medicago truncatula/microbiologia , Doenças das Plantas/imunologia , Contagem de Colônia Microbiana , Citocininas/metabolismo , Proteínas F-Box/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/imunologia , Mutação/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ralstonia/fisiologia , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Regulação para Cima
6.
Proc Natl Acad Sci U S A ; 108(42): E864-70, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21949378

RESUMO

Medicago truncatula is a model for investigating legume genetics, including the genetics and evolution of legume-rhizobia symbiosis. We used whole-genome sequence data to identify and characterize sequence polymorphisms and linkage disequilibrium (LD) in a diverse collection of 26 M. truncatula accessions. Our analyses reveal that M. truncatula harbors both higher diversity and less LD than soybean (Glycine max) and exhibits patterns of LD and recombination similar to Arabidopsis thaliana. The population-scaled recombination rate is approximately one-third of the mutation rate, consistent with expectations for a species with a high selfing rate. Linkage disequilibrium, however, is not extensive, and therefore, the low recombination rate is likely not a major constraint to adaptation. Nucleotide diversity in 100-kb windows was negatively correlated with gene density, which is expected if diversity is shaped by selection acting against slightly deleterious mutations. Among putative coding regions, members of four gene families harbor significantly higher diversity than the genome-wide average. Three of these families are involved in resistance against pathogens; one of these families, the nodule-specific, cysteine-rich gene family, is specific to the galegoid legumes and is involved in control of rhizobial differentiation. The more than 3 million SNPs that we detected, approximately one-half of which are present in more than one accession, are a valuable resource for genome-wide association mapping of genes responsible for phenotypic diversity in legumes, especially traits associated with symbiosis and nodulation.


Assuntos
Medicago truncatula/genética , DNA de Plantas/genética , Fabaceae/genética , Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Recombinação Genética
7.
Mol Ecol ; 22(5): 1383-99, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23294205

RESUMO

Thanks to genome-scale diversity data, present-day studies can provide a detailed view of how natural and cultivated species adapt to their environment and particularly to environmental gradients. However, due to their sensitivity, up-to-date studies might be more sensitive to undocumented demographic effects such as the pattern of migration and the reproduction regime. In this study, we provide guidelines for the use of popular or recently developed statistical methods to detect footprints of selection. We simulated 100 populations along a selective gradient and explored different migration models, sampling schemes and rates of self-fertilization. We investigated the power and robustness of eight methods to detect loci potentially under selection: three designed to detect genotype-environment correlations and five designed to detect adaptive differentiation (based on F(ST) or similar measures). We show that genotype-environment correlation methods have substantially more power to detect selection than differentiation-based methods but that they generally suffer from high rates of false positives. This effect is exacerbated whenever allele frequencies are correlated, either between populations or within populations. Our results suggest that, when the underlying genetic structure of the data is unknown, a number of robust methods are preferable. Moreover, in the simulated scenario we used, sampling many populations led to better results than sampling many individuals per population. Finally, care should be taken when using methods to identify genotype-environment correlations without correcting for allele frequency autocorrelation because of the risk of spurious signals due to allele frequency correlations between populations.


Assuntos
Meio Ambiente , Interação Gene-Ambiente , Variação Genética , Genética Populacional , Modelos Genéticos , Seleção Genética , Adaptação Fisiológica , Bases de Dados Genéticas , Deriva Genética , Loci Gênicos , Genótipo , Modelos Logísticos
8.
Rice (N Y) ; 16(1): 12, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36853402

RESUMO

BACKGROUND: Asian rice Oryza sativa, first domesticated in East Asia, has considerable success in African fields. When and where this introduction occurred is unclear. Rice varieties of Asian origin may have evolved locally during and after migration to Africa, resulting in unique adaptations, particularly in relation to upland cultivation as frequently practiced in Africa. METHODS: We investigated the genetic differentiation between Asian and African varieties using the 3000 Rice Genomes SNP dataset. African upland cultivars were first characterized using principal component analysis among 292 tropical Japonica accessions from Africa and Asia. The particularities of African accessions were then explored using two inference techniques, PCA-KDE for supervised classification and chromosome painting, and ELAI for individual allelic dosage monitoring. KEY RESULTS: Ambiguities of local differentiation between Japonica and other groups pointed at genomic segments that potentially resulted from genetic exchange. Those specific to West African upland accessions were concentrated on chromosome 6 and featured several cAus introgression signals, including a large one between 17.9 and 21.7 Mb. We found iHS statistics in support of positive selection in this region and we provide a list of candidate genes enriched in GO terms that have regulatory functions involved in stress responses that could have facilitated adaptation to harsh upland growing conditions.

9.
BMC Evol Biol ; 12: 195, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23025552

RESUMO

BACKGROUND: Gene duplications are a molecular mechanism potentially mediating generation of functional novelty. However, the probabilities of maintenance and functional divergence of duplicated genes are shaped by selective pressures acting on gene copies immediately after the duplication event. The ratio of non-synonymous to synonymous substitution rates in protein-coding sequences provides a means to investigate selective pressures based on genic sequences. Three molecular signatures can reveal early stages of functional divergence between gene copies: change in the level of purifying selection between paralogous genes, occurrence of positive selection, and transient relaxed purifying selection following gene duplication. We studied three pairs of genes that are known to be involved in an interaction with symbiotic bacteria and were recently duplicated in the history of the Medicago genus (Fabaceae). We sequenced two pairs of polygalacturonase genes (Pg11-Pg3 and Pg11a-Pg11c) and one pair of auxine transporter-like genes (Lax2-Lax4) in 17 species belonging to the Medicago genus, and sought for molecular signatures of differentiation between copies. RESULTS: Selective histories revealed by these three signatures of molecular differentiation were found to be markedly different between each pair of paralogs. We found sites under positive selection in the Pg11 paralogs while Pg3 has mainly evolved under purifying selection. The most recent paralogs examined Pg11a and Pg11c, are both undergoing positive selection and might be acquiring new functions. Lax2 and Lax4 paralogs are both under strong purifying selection, but still underwent a temporary relaxation of purifying selection immediately after duplication. CONCLUSIONS: This study illustrates the variety of selective pressures undergone by duplicated genes and the effect of age of the duplication. We found that relaxation of selective constraints immediately after duplication might promote adaptive divergence.


Assuntos
Medicago/classificação , Medicago/genética , Seleção Genética , Duplicação Gênica , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Proteínas de Plantas/genética , Poligalacturonase/genética
10.
Ecol Evol ; 12(1): e8555, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127051

RESUMO

Resurrection studies are a useful tool to measure how phenotypic traits have changed in populations through time. If these trait modifications correlate with the environmental changes that occurred during the time period, it suggests that the phenotypic changes could be a response to selection. Selfing, through its reduction of effective size, could challenge the ability of a population to adapt to environmental changes. Here, we used a resurrection study to test for adaptation in a selfing population of Medicago truncatula, by comparing the genetic composition and flowering times across 22 generations. We found evidence for evolution toward earlier flowering times by about two days and a peculiar genetic structure, typical of highly selfing populations, where some multilocus genotypes (MLGs) are persistent through time. We used the change in frequency of the MLGs through time as a multilocus fitness measure and built a selection gradient that suggests evolution toward earlier flowering times. Yet, a simulation model revealed that the observed change in flowering time could be explained by drift alone, provided the effective size of the population is small enough (<150). These analyses suffer from the difficulty to estimate the effective size in a highly selfing population, where effective recombination is severely reduced.

11.
BMC Evol Biol ; 11: 229, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21806823

RESUMO

BACKGROUND: We studied patterns of molecular adaptation in the wild Mediterranean legume Medicago truncatula. We focused on two phenotypic traits that are not functionally linked: flowering time and perception of symbiotic microbes. Phenology is an important fitness component, especially for annual plants, and many instances of molecular adaptation have been reported for genes involved in flowering pathways. While perception of symbiotic microbes is also integral to adaptation in many plant species, very few reports of molecular adaptation exist for symbiotic genes. Here we used data from 57 individuals and 53 gene fragments to quantify the overall strength of both positive and purifying selection in M. truncatula and asked if footprints of positive selection can be detected at key genes of rhizobia recognition pathways. RESULTS: We examined nucleotide variation among 57 accessions from natural populations in 53 gene fragments: 5 genes involved in nitrogen-fixing bacteria recognition, 11 genes involved in flowering, and 37 genes used as control loci. We detected 1757 polymorphic sites yielding an average nucleotide diversity (pi) of 0.003 per site. Non-synonymous variation is under sizable purifying selection with 90% of amino-acid changing mutations being strongly selected against. Accessions were structured in two groups consistent with geographical origins. Each of these two groups harboured an excess of rare alleles, relative to expectations of a constant-sized population, suggesting recent population expansion. Using coalescent simulations and an approximate Bayesian computation framework we detected several instances of genes departing from selective neutrality within each group and showed that the polymorphism of two nodulation and four flowering genes has probably been shaped by recent positive selection. CONCLUSION: We quantify the intensity of purifying selection in the M. truncatula genome and show that putative footprints of natural selection can be detected at different time scales in both flowering and symbiotic pathways.


Assuntos
Evolução Molecular , Medicago truncatula/genética , Proteínas de Plantas/genética , Polimorfismo Genético , Adaptação Fisiológica , Variação Genética , Genótipo , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Seleção Genética , Simbiose
12.
Front Plant Sci ; 12: 619154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679833

RESUMO

Empirical studies on natural populations of Medicago truncatula revealed selfing rates higher than 80%, but never up to 100%. Similarly, several studies of predominantly selfing species show variability in the level of residual outcrossing between populations and also between temporal samples of the same population. However, these studies measure global selfing rates at the scale of the population and we do not know whether there is intra-population variation and how outcrossing events are distributed, between genotypes, plants, flowers, or seeds. Theoretical studies predict the maintenance of residual outcrossing in highly selfing species due to environmental (e.g., pollen biology) and/or genetic determinants and decompositions of the variation in outcrossing rate using experimental data can be very informative to test these hypotheses. Here, we focus on one natural population of M. truncatula in order to describe precisely its mating system. In particular, we investigated the determinants of the selfing rate by testing for seasonal variations (environmental determinism) and variations between genotypes (genetic determinism). We measured selfing rates in maternal progenies from plants collected widely across a natural population. For each plant, we collected pods from flowers produced at the beginning and at the end of the flowering season to test for a seasonal variation in the outcrossing rate. For each collected offspring, we also estimated the likelihood that it was issued from a self-fertilization event and assessed the genetic component of variation of this mating system measure. We found a significant, albeit small, increase in outcrossing rate in progenies collected at the end [t m = 0.137 (SD = 0.025)] compared to those collected at the beginning [t m = 0.083 (0.016)] of the flowering season. A significant between genotypes variation in selfing rate was also detected, resulting in a heritability of 9% for the rate of residual outcrossing. Altogether, our work shows that despite a predominantly selfing reproductive mode, M. truncatula displays variation in residual outcrossing rate, and that this trait is likely under a complex determinism combining environmental and genetic factors. We discuss the evolutionary implications of our results for the population.

13.
PLoS One ; 16(2): e0238334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33524023

RESUMO

From the 17th century until the arrival of hybrids in 1960s, maize landraces were cultivated in the South-West of France (SWF), a traditional region for maize cultivation. A set of landraces were collected in this area between the 1950s and 1980s and were then conserved ex situ in a germplam collection. Previous studies using molecular markers on approx. twenty landraces from this region suggested that they belonged to a Pyrenees-Galicia Flint genetic group and originated from hybridizations between Caribbean and Northern Flint germplasms introduced to Europe. In this study, we assessed the structure and genetic diversity of 194 SWF maize landraces to better elucidate their origin, using a 50K SNP array and a bulk DNA approach. We identified two weakly differentiated genetic groups, one in the Western part and the other in the Eastern part of the studied region. We highlighted the existence of a longitudinal gradient along the SWF area that was probably maintained through the interplay between genetic drifts and restricted gene flows. The contact zone between the two groups observed near the Garonne valley may be the result of these evolutionnary forces. We found in landraces from the East part of the region significant cases of admixture between landraces from the Northern Flint group and landraces from either the Caribbean, Andean or Italian groups. We then assumed that SWF landraces had a multiple origin with a predonderance of Northern Flint germplasm for the two SWF groups, notably for the East part.


Assuntos
Zea mays/genética , Evolução Molecular , França , Fluxo Gênico , Deriva Genética , Variação Genética , Genótipo , Hibridização Genética , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Sementes/genética
14.
Evolution ; 73(8): 1578-1590, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31206658

RESUMO

Most theoretical works predict that selfing should reduce the level of additive genetic variance available for quantitative traits within natural populations. Despite a growing number of quantitative genetic studies undertaken during the last two decades, this prediction is still not well supported empirically. To resolve this issue and confirm or reject theoretical predictions, we reviewed quantitative trait heritability estimates from natural plant populations with different rates of self-fertilization and carried out a meta-analysis. In accordance with models of polygenic traits under stabilizing selection, we found that the fraction of additive genetic variance is negatively correlated with the selfing rate. Although the mating system explains a moderate fraction of the variance, the mean reduction of narrow-sense heritability values between strictly allogamous and predominantly selfing populations is strong, around 60%. Because some nonadditive components of genetic variance become selectable under inbreeding, we determine whether self-fertilization affects the relative contribution of these components to genetic variance by comparing narrow-sense heritability estimates from outcrossing populations with broad-sense heritability estimated in autogamous populations. Results suggest that these nonadditive components of variance may restore some genetic variance in predominantly selfing populations; it remains, however, uncertain how these nonadditive components will contribute to adaptation.


Assuntos
Variação Genética , Magnoliopsida/genética , Herança Multifatorial , Característica Quantitativa Herdável , Autofertilização , Endogamia
15.
Genetics ; 177(4): 2123-33, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18073426

RESUMO

Symbiotic nitrogen-fixing rhizobia are able to trigger root deformation in their Fabaceae host plants, allowing their intracellular accommodation. They do so by delivering molecules called Nod factors. We analyzed the patterns of nucleotide polymorphism of five genes controlling early Nod factor perception and signaling in the Fabaceae Medicago truncatula to understand the selective forces shaping the evolution of these genes. We used 30 M. truncatula genotypes sampled in a genetically homogeneous region of the species distribution range. We first sequenced 24 independent loci and detected a genomewide departure from the hypothesis of neutrality and demographic equilibrium that suggests a population expansion. These data were used to estimate parameters of a simple demographic model incorporating population expansion. The selective neutrality of genes controlling Nod factor perception was then examined using a combination of two complementary neutrality tests, Tajima's D and Fay and Wu's standardized H. The joint distribution of D and H expected under neutrality was obtained under the fitted population expansion model. Only the gene DMI1, which is expected to regulate the downstream signal, shows a pattern consistent with a putative selective event. In contrast, the receptor-encoding genes NFP and NORK show no significant signatures of selection. Among the genes that we analyzed, only DMI1 should be viewed as a candidate for adaptation in the recent history of M. truncatula.


Assuntos
Genes de Plantas , Genética Populacional , Lipopolissacarídeos/metabolismo , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Seleção Genética , Transdução de Sinais , Evolução Molecular , Variação Genética , Dados de Sequência Molecular , Fixação de Nitrogênio , Análise de Sequência de DNA
16.
Mol Ecol Resour ; 18(2): 194-203, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28977733

RESUMO

Sequencing pools of individuals rather than individuals separately reduces the costs of estimating allele frequencies at many loci in many populations. Theoretical and empirical studies show that sequencing pools comprising a limited number of individuals (typically fewer than 50) provides reliable allele frequency estimates, provided that the DNA pooling and DNA sequencing steps are carefully controlled. Unequal contributions of different individuals to the DNA pool and the mean and variance in sequencing depth both can affect the standard error of allele frequency estimates. To our knowledge, no study separately investigated the effect of these two factors on allele frequency estimates; so that there is currently no method to a priori estimate the relative importance of unequal individual DNA contributions independently of sequencing depth. We develop a new analytical model for allele frequency estimation that explicitly distinguishes these two effects. Our model shows that the DNA pooling variance in a pooled sequencing experiment depends solely on two factors: the number of individuals within the pool and the coefficient of variation of individual DNA contributions to the pool. We present a new method to experimentally estimate this coefficient of variation when planning a pooled sequencing design where samples are either pooled before or after DNA extraction. Using this analytical and experimental framework, we provide guidelines to optimize the design of pooled sequencing experiments. Finally, we sequence replicated pools of inbred lines of the plant Medicago truncatula and show that the predictions from our model generally hold true when estimating the frequency of known multilocus haplotypes using pooled sequencing.


Assuntos
Biologia Computacional/métodos , Frequência do Gene , Genética Populacional/métodos , Haplótipos , Análise de Sequência de DNA/métodos , Medicago truncatula/classificação , Medicago truncatula/genética
17.
BMC Evol Biol ; 7: 210, 2007 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17986323

RESUMO

BACKGROUND: The NODULATION RECEPTOR KINASE (NORK) gene encodes a Leucine-Rich Repeat (LRR)-containing receptor-like protein and controls the infection by symbiotic rhizobia and endomycorrhizal fungi in Legumes. The occurrence of numerous amino acid changes driven by directional selection has been reported in this gene, using a limited number of messenger RNA sequences, but the functional reason of these changes remains obscure. The Medicago genus, where changes in rhizobial associations have been previously examined, is a good model to test whether the evolution of NORK is influenced by rhizobial interactions. RESULTS: We sequenced a region of 3610 nucleotides (encoding a 392 amino acid-long region of the NORK protein) in 32 Medicago species. We confirm that positive selection in NORK has occurred within the Medicago genus and find that the amino acid positions targeted by selection occur in sites outside of solvent-exposed regions in LRRs, and other sites in the N-terminal region of the protein. We tested if branches of the Medicago phylogeny where changes of rhizobial symbionts occurred displayed accelerated rates of amino acid substitutions. Only one branch out of five tested, leading to M. noeana, displays such a pattern. Among other branches, the most likely for having undergone positive selection is not associated with documented shift of rhizobial specificity. CONCLUSION: Adaptive changes in the sequence of the NORK receptor have involved the LRRs, but targeted different sites than in most previous studies of LRR proteins evolution. The fact that positive selection in NORK tends not to be associated to changes in rhizobial specificity indicates that this gene was probably not involved in evolving rhizobial preferences. Other explanations (e.g. coevolutionary arms race) must be tested to explain the adaptive evolution of NORK.


Assuntos
Evolução Molecular , Genes de Plantas/genética , Medicago/genética , Fosfotransferases/genética , Sinorhizobium/fisiologia , Simbiose , Sequência de Aminoácidos , Sequência de Bases , Primers do DNA/química , Medicago/enzimologia , Medicago/microbiologia , Dados de Sequência Molecular , Filogenia , Seleção Genética , Especificidade da Espécie
18.
BMC Plant Biol ; 6: 28, 2006 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-17166278

RESUMO

BACKGROUND: Exploiting genetic diversity requires previous knowledge of the extent and structure of the variation occurring in a species. Such knowledge can in turn be used to build a core-collection, i.e. a subset of accessions that aim at representing the genetic diversity of this species with a minimum of repetitiveness. We investigate the patterns of genetic diversity and population structure in a collection of 346 inbred lines representing the breadth of naturally occurring diversity in the Legume plant model Medicago truncatula using 13 microsatellite loci distributed throughout the genome. RESULTS: We confirm the uniqueness of all these genotypes and reveal a large amount of genetic diversity and allelic variation within this autogamous species. Spatial genetic correlation was found only for individuals originating from the same population and between neighbouring populations. Using a model-based clustering algorithm, we identified four main genetic clusters in the set of individuals analyzed. This stratification matches broad geographic regions. We also identified a set of "admixed" individuals that do not fit with this population structure scheme. CONCLUSION: The stratification inferred is discussed considering potential historical events like expansion, refuge history and admixture between neighbouring groups. Information on the allelic richness and the inferred population structure are used to build a nested core-collection. The set of inbred lines and the core collections are publicly available and will help coordinating efforts for the study of naturally occurring variation in the growing Medicago truncatula community.


Assuntos
DNA de Plantas/genética , Genes de Plantas , Variação Genética , Medicago truncatula/genética , Repetições de Microssatélites/genética , Genótipo
19.
Front Genet ; 7: 130, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27507986

RESUMO

Ongoing global climate changes imply new challenges for agriculture. Whether plants and crops can adapt to such rapid changes is still a widely debated question. We previously showed adaptation in the form of earlier flowering in pearl millet at the scale of a whole country over three decades. However, this analysis did not deal with variability of year to year selection. To understand and possibly manage plant and crop adaptation, we need more knowledge of how selection acts in situ. Is selection gradual, abrupt, and does it vary in space and over time? In the present study, we tracked the evolution of allele frequency in two genes associated with pearl millet phenotypic variation in situ. We sampled 17 populations of cultivated pearl millet over a period of 2 years. We tracked changes in allele frequencies in these populations by genotyping more than seven thousand individuals. We demonstrate that several allele frequencies changes are compatible with selection, by correcting allele frequency changes associated with genetic drift. We found marked variation in allele frequencies from year to year, suggesting a variable selection effect in space and over time. We estimated the strength of selection associated with variations in allele frequency. Our results suggest that the polymorphism maintained at the genes we studied is partially explained by the spatial and temporal variability of selection. In response to environmental changes, traditional pearl millet varieties could rapidly adapt thanks to this available functional variability.

20.
Genetics ; 165(4): 2193-212, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14704197

RESUMO

Inbreeding depression is a general phenomenon that is due mainly to recessive deleterious mutations, the so-called mutation load. It has been much studied theoretically. However, until very recently, population structure has not been taken into account, even though it can be an important factor in the evolution of populations. Population subdivision modifies the dynamics of deleterious mutations because the outcome of selection depends on processes both within populations (selection and drift) and between populations (migration). Here, we present a general model that permits us to gain insight into patterns of inbreeding depression, heterosis, and the load in subdivided populations. We show that they can be interpreted with reference to single-population theory, using an appropriate local effective population size that integrates the effects of drift, selection, and migration. We term this the "effective population size of selection" (NS(e)). For the infinite island model, for example, it is equal to NS(e) = N1 + m/hs, where N is the local population size, m the migration rate, and h and s the dominance and selection coefficients of deleterious mutation. Our results have implications for the estimation and interpretation of inbreeding depression in subdivided populations, especially regarding conservation issues. We also discuss the possible effects of migration and subdivision on the evolution of mating systems.


Assuntos
Genética Populacional , Vigor Híbrido/genética , Endogamia , Modelos Genéticos , Mutação/genética , Seleção Genética , Animais , Evolução Biológica , Simulação por Computador , Emigração e Imigração , Deriva Genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA