Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ALTEX ; 41(2): 248-259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37983382

RESUMO

An increasing body of evidence identifies pollutant exposure as a risk factor for cardiovascular disease (CVD), while CVD incidence rises steadily with the aging population. Although numerous experimental studies are now available, the mechanisms through which lifetime exposure to environmental pollutants can result in CVD are not fully understood. To comprehensively describe and understand the pathways through which pollutant exposure leads to cardiotoxicity, a systematic mapping review of the available toxicological evidence is needed. This protocol outlines a step-by-step framework for conducting this review. Using the National Toxicology Program (NTP) Health Assessment and Translation (HAT) approach for conducting toxicological systematic reviews, we selected 362 out of 8111 in vitro (17%), in vivo (67%), and combined (16%) studies for 129 potential cardiotoxic environmental pollutants, including heavy metals (29%), air pollutants (16%), pesticides (27%), and other chemicals (28%). The internal validity of included studies is being assessed with HAT and SYRCLE Risk of Bias tools. Tabular templates are being used to extract key study elements regarding study setup, methodology, techniques, and (qualitative and quantitative) outcomes. Subsequent synthesis will consist of an explorative meta-analysis of possible pollutant-related cardiotoxicity. Evidence maps and interactive knowledge graphs will illustrate evidence streams, cardiotoxic effects and associated quality of evidence, helping researchers and regulators to efficiently identify pollutants of interest. The evidence will be integrated in novel Adverse Outcome Pathways to facilitate regulatory acceptance of non-animal methods for cardiotoxicity testing. The current article describes the progress of the steps made in the systematic mapping review process.


Heart disease is a leading global cause of death. Recent research indicates that certain environmental chemicals can worsen heart problems. We're conducting a rigorous review of scientific studies to understand how these chemicals affect the heart. This will inform policymakers and promote non-animal testing methods for cardiotoxicity by providing a clear overview of the toxicological evidence. We have reviewed over 8,000 articles and focused on 362 studies about 129 chemicals, including heavy metals, air pollutants and pesticides, and their effects on the heart. The current manuscript describes the used methods and steps made in this process. The outcome of our systematic review of these 362 articles will be a comprehensive database that will aid the development of alternative testing methods for cardiotoxicity.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Idoso , Humanos , Cardiotoxicidade , Relatório de Pesquisa , Fatores de Risco , Revisões Sistemáticas como Assunto
2.
BMC Genomics ; 12: 427, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21864345

RESUMO

BACKGROUND: Microbial genomes do not merely evolve through the slow accumulation of mutations, but also, and often more dramatically, by taking up new DNA in a process called horizontal gene transfer. These innovation leaps in the acquisition of new traits can take place via the introgression of single genes, but also through the acquisition of large gene clusters, which are termed Genomic Islands. Since only a small proportion of all the DNA diversity has been sequenced, it can be hard to find the appropriate donors for acquired genes via sequence alignments from databases. In contrast, relative oligonucleotide frequencies represent a remarkably stable genomic signature in prokaryotes, which facilitates compositional comparisons as an alignment-free alternative for phylogenetic relatedness. In this project, we test whether Genomic Islands identified in individual bacterial genomes have a similar genomic signature, in terms of relative dinucleotide frequencies, and can therefore be expected to originate from a common donor species. RESULTS: When multiple Genomic Islands are present within a single genome, we find that up to 28% of these are compositionally very similar to each other, indicative of frequent recurring acquisitions from the same donor to the same acceptor. CONCLUSIONS: This represents the first quantitative assessment of common directional transfer events in prokaryotic evolutionary history. We suggest that many of the resident Genomic Islands per prokaryotic genome originated from the same source, which may have implications with respect to their regulatory interactions, and for the elucidation of the common origins of these acquired gene clusters.


Assuntos
Evolução Molecular , Genoma Arqueal , Genoma Bacteriano , Ilhas Genômicas , DNA Arqueal/genética , DNA Bacteriano/genética , Transferência Genética Horizontal , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA