Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Clin Chem ; 55(8): 1530-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19556448

RESUMO

BACKGROUND: For adults with chest pain, the electrocardiogram (ECG) and measures of serum biomarkers are used to screen and diagnose myocardial necrosis. These measurements require time that can delay therapy and affect prognosis. Our objective was to investigate the feasibility and utility of saliva as an alternative diagnostic fluid for identifying biomarkers of acute myocardial infarction (AMI). METHODS: We used Luminex and lab-on-a-chip methods to assay 21 proteins in serum and unstimulated whole saliva procured from 41 AMI patients within 48 h of chest pain onset and from 43 apparently healthy controls. Data were analyzed by use of logistic regression and area under curve (AUC) for ROC analysis to evaluate the diagnostic utility of each biomarker, or combinations of biomarkers, in screening for AMI. RESULTS: Both established and novel cardiac biomarkers demonstrated significant differences in concentrations between patients with AMI and controls without AMI. The saliva-based biomarker panel of C-reactive protein, myoglobin, and myeloperoxidase exhibited significant diagnostic capability (AUC = 0.85, P < 0.0001) and in conjunction with ECG yielded strong screening capacity for AMI (AUC = 0.96) comparable to that of the panel (brain natriuretic peptide, troponin-I, creatine kinase-MB, myoglobin; AUC = 0.98) and far exceeded the screening capacity of ECG alone (AUC approximately 0.6). En route to translating these findings to clinical practice, we adapted these unstimulated whole saliva tests to a novel lab-on-a-chip platform for proof-of-principle screens for AMI. CONCLUSIONS: Complementary to ECG, saliva-based tests within lab-on-a-chip systems may provide a convenient and rapid screening method for cardiac events in prehospital stages for AMI patients.


Assuntos
Biomarcadores/análise , Infarto do Miocárdio/diagnóstico , Análise Serial de Proteínas/métodos , Proteínas/análise , Saliva/química , Doença Aguda , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Sanguíneas/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sistemas Automatizados de Assistência Junto ao Leito , Curva ROC , Sensibilidade e Especificidade
2.
Infect Immun ; 76(5): 2080-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18332211

RESUMO

Periodontitis is a chronic human inflammatory disease initiated and sustained by dental plaque microorganisms. A major contributing pathogen is Porphyromonas gingivalis, a gram-negative bacterium recognized by Toll-like receptor 2 (TLR2) and TLR4, which are expressed by human gingival epithelial cells (HGECs). However, it is still unclear how these cells respond to P. gingivalis and initiate inflammatory and immune responses. We have reported previously that HGECs produce a wide range of proinflammatory cytokines, including interleukin-6 (IL-6), IL-8, granulocyte-macrophage colony-stimulating factor, tumor necrosis factor alpha (TNF-alpha), and IL-1beta. In this study, we show that IL-1beta has a special role in the modulation of other inflammatory cytokines in HGECs challenged with P. gingivalis. Our results show that the increased production of IL-1beta correlates with the cell surface expression of TLR4, and more specifically, TLR4-normal HGECs produce fourfold more IL-1beta than do TLR4-deficient HGECs after challenge. Moreover, blocking the IL-1beta receptor greatly reduces the production of "secondary" proinflammatory cytokines such as IL-8 or IL-6. Our data indicate that the induction of IL-1beta plays an important role in mediating the release of other proinflammatory cytokines from primary human epithelial cells following challenge with P. gingivalis, and this process may be an inflammatory enhancement mechanism adopted by epithelial cells.


Assuntos
Citocinas/biossíntese , Células Epiteliais/imunologia , Interleucina-1beta/biossíntese , Porphyromonas gingivalis/imunologia , Células Cultivadas , Inativação Gênica , Humanos , Receptores de Interleucina-1/antagonistas & inibidores , Receptores de Interleucina-1/imunologia , Receptor 4 Toll-Like/biossíntese , Receptor 4 Toll-Like/deficiência , Receptor 4 Toll-Like/imunologia
3.
J Immunol ; 180(3): 1818-25, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18209079

RESUMO

IFN-beta production is a critical step in human innate immune responses and is primarily controlled at the transcription level by highly ordered mechanisms. IFN-beta can be induced by pattern-recognition receptors such as the TLR4. S1P1 is a G protein-coupled receptor, which has a high affinity for sphingosine 1-phosphate (S1P). Although many of the receptors and signaling pathways leading to the expression of IFN-beta have been identified and characterized, it is still unclear how IFN-beta is regulated in primary human gingival epithelial cells (HGECs). In this study, we demonstrate that S1P1 and TLR4, acting in unison, play an important role in IFN-beta expression at the protein and mRNA level in HGECs. We demonstrate that the expression of both IFN-beta and IFN-inducible protein-10 (CXCL-10) is significantly up-regulated by LPS and S1P or LPS and a specific S1P1 agonist. This enhanced innate immune response is attenuated in HGECs by small interfering RNA knockdown of either TLR4 or S1P1. Moreover, we show that triggering of TLR4 results in the increased expression of S1P1 receptors. Furthermore, we found that IFN-regulatory factor 3 activation was maximized by LPS and S1P through PI3K. Our data show that triggering TLR4 increases S1P1, such that both TLR4 and S1P1 acting through PI3K enhancement of IFN-regulatory factor 3 activation increase IFN-beta expression in epithelial cells. The functional association between TLR4 and the S1P1 receptor demonstrates a novel mechanism in the regulation of IFN-beta and CXCL-10 in human primary gingival epithelial cells.


Assuntos
Gengiva/imunologia , Interferon beta/metabolismo , Lisofosfolipídeos/fisiologia , Esfingosina/análogos & derivados , Receptor 4 Toll-Like/fisiologia , Células Cultivadas , Quimiocina CXCL10/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Gengiva/citologia , Gengiva/efeitos dos fármacos , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Lipopolissacarídeos/farmacologia , Lisofosfolipídeos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/farmacologia , Esfingosina/fisiologia
4.
Eur J Immunol ; 38(4): 1138-47, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18395849

RESUMO

Toll-like receptors (TLR) are pattern recognition receptors for highly conserved microbial molecular patterns. Activation of TLR is a pivotal step in the initiation of innate, inflammatory, and immune defense mechanisms. Recent findings indicate that G protein-coupled receptors (GPCR) may modulate TLR signaling, but it is unclear which GPCR are involved in this process. One such cooperation between GPCR and TLR can be attributed to the sphingosine 1-phosphate (S1P) receptor family. The S1P receptors (S1P1-5) are a family of GPCR with a high affinity for S1P, a serum-borne bioactive lipid associated with diverse biological activities such as inflammation and healing. In this study, we show that pro-inflammatory cytokine production, including IL-6 and IL-8, was increased with LPS and concomitant S1P stimulation. Furthermore, elevated cytokine production following LPS and S1P challenge in human gingival epithelial cells (HGEC) was significantly reduced when TLR4, S1P1 or S1P3 signaling was blocked. Our study also shows that S1P1 and S1P3 expression was induced by LPS in HGEC, and this elevated expression enhanced the influence of S1P in its cooperation with TLR4 to increase cytokine production. This cooperation between TLR4 and S1P1 or S1P3 demonstrates that TLR4 and GPCR can interact to enhance cytokine production in epithelial cells.


Assuntos
Citocinas/biossíntese , Células Epiteliais/metabolismo , Gengiva/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Receptor 4 Toll-Like/metabolismo , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Gengiva/efeitos dos fármacos , Humanos , Lipopolissacarídeos/farmacologia , Lisofosfolipídeos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA