Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cereb Cortex ; 23(9): 2179-89, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22791805

RESUMO

The metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, the only members of group I mGlu receptors, are implicated in synaptic plasticity and mechanisms of feedback control of glutamate release. They exhibit nearly complementary distributions throughout the central nervous system, well evident in the cerebellum, where mGlu1 receptor is most intensely expressed while mGlu5 receptor is not. Despite their different distribution, they show a similar subcellular localization and use common transducing pathways. We recently described the Grm1(crv4) mouse with motor coordination deficits and renal anomalies caused by a spontaneous mutation inactivating the mGlu1 receptor. To define the neuropathological mechanisms in these mice, we evaluated expression and function of the mGlu5 receptor in cerebral and cerebellar cortices. Western blot and immunofluorescence analyses showed mGlu5 receptor overexpression. Quantitative reverse transcriptase-polymerase chain reaction results indicated that the up-regulation is already evident at RNA level. Functional studies confirmed an enhanced glutamate release from cortical cerebral and cerebellar synaptosomes when compared with wild-type that is abolished by the mGlu5 receptor-specific inhibitor, 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP). Finally, acute MPEP treatment of Grm1(crv4/crv4) mice induced an evident although incomplete improvement of motor coordination, suggesting that mGlu5 receptors enhanced activity worsens, instead of improving, the motor-coordination defects in the Grm1(crv4/crv4) mice.


Assuntos
Encéfalo/fisiopatologia , Transtornos dos Movimentos/fisiopatologia , Receptor de Glutamato Metabotrópico 5/fisiologia , Receptores de Glutamato Metabotrópico/deficiência , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Receptor de Glutamato Metabotrópico 5/metabolismo , Sinaptossomos/fisiologia
2.
J Neurochem ; 121(3): 428-37, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22385043

RESUMO

The impact of Regulated upon Activation Normal T cells Expressed and Secreted (RANTES) on the release of pre-loaded [³H]D-aspartate ([³H]D-ASP) from mouse spinal cord synaptosomes was investigated. RANTES (0.01-1 nM) failed to affect the spontaneous release, but facilitated the 15 mM K⁺-evoked overflow of [³H]D-ASP. Incubation of synaptosomes with antibodies raised against the chemokine receptor (CCR)1 and CCR5 proteins prevented RANTES-induced facilitation of glutamate exocytosis, whereas anti-CCR3 antibody was inefficacious. Accordingly, BX513 and D-Ala-peptide T-amide (DAPTA) CCR1 and CCR5 antagonists, respectively, prevented RANTES-induced effect, whereas the CCR3 antagonist SB 328437 was inactive. To compare these findings to previous results, we quantified the effects of CCR antagonists on the RANTES-induced modifications of the spontaneous and the K⁺-evoked [³H]D-ASP release in the mouse cortex. Here, CCR1 and CCR5, but not CCR3, antagonists prevented the RANTES-mediated [³H]D-ASP release, whereas RANTES-induced inhibition of the 12 mM K⁺-evoked [³H]D-ASP exocytosis was also antagonized by SB 328437. Facilitation of glutamate exocytosis in spinal cord relied on PLC-dependent mobilization of Ca²âº from IP3-sensitive stores; adenylyl cyclase was not involved. CCR1, CCR3 and CCR5 receptor proteins were present in spinal cord synaptosomal and gliosomal lysates, although RANTES-induced changes to glutamate release could not be observed in gliosomes. Our results confirm the role of RANTES as modulator of glutamate transmission.


Assuntos
Quimiocina CCL5/farmacologia , Aminoácidos Excitatórios/metabolismo , Medula Espinal/metabolismo , Animais , Ácido Aspártico/metabolismo , Western Blotting , Cálcio/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Quimiocina CCL5/antagonistas & inibidores , Quimiocinas/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Exocitose/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Receptores de Quimiocinas/antagonistas & inibidores , Receptores de Quimiocinas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
3.
Am J Pathol ; 178(3): 1257-69, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21356376

RESUMO

The metabotropic glutamate (mGlu) receptor 1 (GRM1) has been shown to play an important role in neuronal cells by triggering, through calcium release from intracellular stores, various signaling pathways that finally modulate neuron excitability, synaptic plasticity, and mechanisms of feedback regulation of neurotransmitter release. Herein, we show that Grm1 is expressed in glomerular podocytes and that a glomerular phenotype is exhibited by Grm1(crv4) mice carrying a spontaneous recessive inactivating mutation of the gene. Homozygous Grm1(crv4/crv4) and, to a lesser extent, heterozygous mice show albuminuria, podocyte foot process effacement, and reduced levels of nephrin and other proteins known to contribute to the maintenance of podocyte cell structure. Overall, the present data extend the role of mGlu1 receptor to the glomerular filtration barrier. The regulatory action of mGlu1 receptor in dendritic spine morphology and in the control of glutamate release is well acknowledged in neuronal cells. Analogously, we speculate that mGlu1 receptor may regulate foot process morphology and intercellular signaling in the podocyte.


Assuntos
Albuminúria/patologia , Glomérulos Renais/patologia , Receptores de Glutamato Metabotrópico/deficiência , Albuminúria/complicações , Albuminúria/metabolismo , Animais , Western Blotting , Células Cultivadas , Doxorrubicina/farmacologia , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Córtex Renal/patologia , Nefropatias/complicações , Nefropatias/metabolismo , Nefropatias/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/ultraestrutura , Camundongos , Fenótipo , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/patologia , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
4.
J Neurol ; 257(4): 598-602, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19924463

RESUMO

The metabotropic glutamate (mGlu) 1 receptor, coded by the GRM1 gene, is involved in synaptic activities, learning and neuroprotection. Eleven different mouse Grm1 mutations, either induced or spontaneously occurring, have been reported, including one from our group. All the mutations result in a complex phenotype with ataxia and intention tremor in mice. Moreover, autoantibodies against mGlu1 receptor have been associated with paraneoplastic cerebellar ataxia in humans. In spite of the large clinical and genetic heterogeneity displayed by the inherited forms of cerebellar ataxia, forms remain with a yet unknown molecular definition. With the evidence coming out from mouse models and from paraneoplastic ataxia, it seems that GRM1 represents a good candidate gene for early-onset ataxia forms, though no GRM1 mutations have thus far been looked for. The aim of this study was to investigate the possible involvement of GRM1 in early-onset or familial forms of ataxia. We searched for gene mutations in a panel of patients with early-onset ataxia as yet molecularly undefined. No causative mutations were found, though we detected synonymous variants in the exons and changes in flanking intronic sequences which are unlikely to alter correct splicing upon bioinformatics prediction. As for other known forms of inherited ataxias, absence of mutations in GRM1 seems to suggest a relatively low frequency in cerebellar ataxias.


Assuntos
Ataxia Cerebelar/genética , Receptores de Glutamato Metabotrópico/genética , Adolescente , Idade de Início , Ataxia Cerebelar/fisiopatologia , Criança , Análise Mutacional de DNA/métodos , Europa (Continente) , Feminino , Humanos , Masculino , Mutação/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA