Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phytopathology ; 114(8): 1810-1821, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723191

RESUMO

The microbial oomycete pathogen Phytophthora infestans causes severe epidemics of potato late blight in crops globally. Disease management benefits from an understanding of the diversity of pathogen populations. In this study, we explore the dynamics of P. infestans populations in the late blight-potato agro-ecosystem across the Indian subcontinent. Investigations of the macroecological observations at the field level and microbial ecological principles provided insights into future pathogen behavior. We use a comprehensive simple sequence repeat allele dataset to demonstrate that an invasive clonal lineage called EU_13_A2 has dominated populations over 14 years across India, Bangladesh, and Pakistan. Increasing levels of subclonal variation were tracked over time and space, and, for the first time, populations in Asia were also compared with the source populations from Europe. Within India, a regional pathogen population structure was observed with evidence for local migration, cross-border movement between surrounding countries, and introductions via imports. There was also evidence of genetic drift and between-season transmission of more strongly pathogenic subclones with a complete displacement of some subclonal types. The limited introduction of novel genotypes and the use of resistant potato cultivars could contribute to the dominance of the 13_A2 lineage. The insights will contribute to the management of the pathogen in these key global potato production regions.


Assuntos
Phytophthora infestans , Doenças das Plantas , Solanum tuberosum , Índia , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Phytophthora infestans/genética , Phytophthora infestans/fisiologia , Variação Genética , Genótipo , Bangladesh , Paquistão , Espécies Introduzidas , Alelos , Repetições de Microssatélites/genética , Dinâmica Populacional
2.
Plant Dis ; 108(2): 486-501, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37498632

RESUMO

A survey of the flori-horticultural nurseries in eastern India found Phytophthora nicotianae to be the most widespread Phytophthora species associated with different foliar symptoms of nursery plants and identified the presence of P. palmivora in eastern Indian nurseries for the first time. The survey also led to the first worldwide finding of P. nicotianae on Dipteracanthus prostratus (Poir.) Nees; Ocimum tenuiflorum L. (syn. Ocimum sanctum L.); Philodendron xanadu Croat, Mayo & J. Boos; and Pyrostegia venusta (Ker-Gawl.) Miers and P. palmivora on Episcia cupreata (Hook.) Hanst., as well as the first report from India of P. nicotianae on Spathiphyllum wallisii Regel; Anthurium andraeanum Linden ex André; and Adenium obesum (Forsk.) Roem. & Schult. Sensitivity to commercial fungicides Glazer 35WS, Rallis India (metalaxyl, FRAC code 4); Ridomil Gold, Syngenta (mefenoxam + mancozeb); Revus, Syngenta (mandipropamid, FRAC code 40); Aliette Bayer (fosetyl-Al, FRAC code 33); Acrobat, BASF (dimethomorph, FRAC code 40); and Amistar, Syngenta (azoxystrobin, FRAC code 11) was analyzed, showing EC50 values ranging from 0.75 to 16.39 ppm, 0.74 to 1.45 ppm, 2.43 to 17.21 ppm, 63.81 to 327.31 ppm, 8.88 to 174.69 ppm, and 0.1 to 1.13 ppm, respectively, with no cross-resistance of the isolates to the fungicides. The baseline information produced about these Phytophthora spp. from ornamental and horticultural host associations could help prevent the pathogens from becoming primary drivers of new disease outbreaks and their large-scale distribution beyond their natural endemic ranges.


Assuntos
Fungicidas Industriais , Berçários para Lactentes , Phytophthora , Pirimidinas , Humanos , Fungicidas Industriais/farmacologia , Estrobilurinas
3.
Mol Plant Pathol ; 16(4): 413-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25178392

RESUMO

Oomycetes form a deep lineage of eukaryotic organisms that includes a large number of plant pathogens which threaten natural and managed ecosystems. We undertook a survey to query the community for their ranking of plant-pathogenic oomycete species based on scientific and economic importance. In total, we received 263 votes from 62 scientists in 15 countries for a total of 33 species. The Top 10 species and their ranking are: (1) Phytophthora infestans; (2, tied) Hyaloperonospora arabidopsidis; (2, tied) Phytophthora ramorum; (4) Phytophthora sojae; (5) Phytophthora capsici; (6) Plasmopara viticola; (7) Phytophthora cinnamomi; (8, tied) Phytophthora parasitica; (8, tied) Pythium ultimum; and (10) Albugo candida. This article provides an introduction to these 10 taxa and a snapshot of current research. We hope that the list will serve as a benchmark for future trends in oomycete research.


Assuntos
Oomicetos/classificação , Plantas/microbiologia , Oomicetos/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA