Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Naturwissenschaften ; 108(4): 26, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34115204

RESUMO

The non-mammalian therapsids comprise a paraphyletic assemblage of Permian-Jurassic synapsids closely related to mammals that includes six major clades of largely unresolved phylogenetic affinity. Understanding the early evolutionary radiation of therapsids is complicated by a gap in the fossil record during the Roadian (middle Permian) known as Olson's gap. Because of its early stratigraphic occurrence and its primitive features, Raranimus dashankouensis, from the Dashankou fauna (Rodian), Qingtoushan Formation (China), is currently considered the best candidate to fill this gap. However, it is known from only a single specimen, an isolated snout, which limits the amount of usable phylogenetic characters to reconstruct its affinities. In addition, understanding of the stratigraphy of the Qingtoushan Formation is poor. Here, we used CT scanning techniques to digitally reconstruct the bones and trigeminal canals of the snout of Raranimus in 3D. We confirm that Raranimus shares a high number of synapomorphies with more derived therapsids and is the only therapsid known so far to display a "pelycosaur"-like maxillary canal bearing a long caudal alveolar canal that gives off branches at regular intervals. This plesiomorphic feature supports the idea that Raranimus is basal to other therapsids.


Assuntos
Fósseis , Filogenia , Vertebrados/classificação , Animais , China , Tomografia Computadorizada por Raios X , Vertebrados/anatomia & histologia
2.
Sci Rep ; 6: 25604, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27157809

RESUMO

A rich fossil record chronicles the distant origins of mammals, but the evolution of defining soft tissue characters of extant mammals, such as mammary glands and hairs is difficult to interpret because soft tissue does not readily fossilize. As many soft tissue features are derived from dermic structures, their evolution is linked to that of the nervous syutem, and palaeoneurology offers opportunities to find bony correlates of these soft tissue features. Here, a CT scan study of 29 fossil skulls shows that non-mammaliaform Prozostrodontia display a retracted, fully ossified, and non-ramified infraorbital canal for the infraorbital nerve, unlike more basal therapsids. The presence of a true infraorbital canal in Prozostrodontia suggests that a motile rhinarium and maxillary vibrissae were present. Also the complete ossification of the parietal fontanelle (resulting in the loss of the parietal foramen) and the development of the cerebellum in Probainognathia may be pleiotropically linked to the appearance of mammary glands and having body hair coverage since these traits are all controlled by the same homeogene, Msx2, in mice. These suggest that defining soft tissue characters of mammals were already present in their forerunners some 240 to 246 mya.


Assuntos
Evolução Biológica , Mamíferos/anatomia & histologia , Sistema Nervoso/anatomia & histologia , Paleontologia , Característica Quantitativa Herdável , Animais , Feminino , Cabelo/anatomia & histologia , Processamento de Imagem Assistida por Computador , Glândulas Mamárias Animais/anatomia & histologia , Maxila/anatomia & histologia , Crânio/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA