Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Magn Reson Imaging ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37854004

RESUMO

Magnetic resonance imaging (MRI) can provide accurate and non-invasive diagnoses of lower extremity injuries in athletes. Sport-related injuries commonly occur in and around the knee and can affect the articular cartilage, patellar tendon, hamstring muscles, and bone. Sports medicine physicians utilize MRI to evaluate and diagnose injury, track recovery, estimate return to sport timelines, and assess the risk of recurrent injury. This article reviews the current literature and describes novel developments of quantitative MRI tools that can further advance our understanding of sports injury diagnosis, prevention, and treatment while minimizing injury risk and rehabilitation time. Innovative approaches for enhancing the early diagnosis and treatment of musculoskeletal injuries in basketball players span a spectrum of techniques. These encompass the utilization of T2 , T1ρ , and T2 * quantitative MRI, along with dGEMRIC and Na-MRI to assess articular cartilage injuries, 3D-Ultrashort echo time MRI for patellar tendon injuries, diffusion tensor imaging for acute myotendinous injuries, and sagittal short tau inversion recovery and axial long-axis T1 -weighted, and 3D Cube sequences for bone stress imaging. Future studies should further refine and validate these MR-based quantitative techniques while exploring the lifelong cumulative impact of basketball on players' knees. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.

2.
J Magn Reson Imaging ; 57(4): 1029-1039, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35852498

RESUMO

BACKGROUND: Deep learning (DL)-based automatic segmentation models can expedite manual segmentation yet require resource-intensive fine-tuning before deployment on new datasets. The generalizability of DL methods to new datasets without fine-tuning is not well characterized. PURPOSE: Evaluate the generalizability of DL-based models by deploying pretrained models on independent datasets varying by MR scanner, acquisition parameters, and subject population. STUDY TYPE: Retrospective based on prospectively acquired data. POPULATION: Overall test dataset: 59 subjects (26 females); Study 1: 5 healthy subjects (zero females), Study 2: 8 healthy subjects (eight females), Study 3: 10 subjects with osteoarthritis (eight females), Study 4: 36 subjects with various knee pathology (10 females). FIELD STRENGTH/SEQUENCE: A 3-T, quantitative double-echo steady state (qDESS). ASSESSMENT: Four annotators manually segmented knee cartilage. Each reader segmented one of four qDESS datasets in the test dataset. Two DL models, one trained on qDESS data and another on Osteoarthritis Initiative (OAI)-DESS data, were assessed. Manual and automatic segmentations were compared by quantifying variations in segmentation accuracy, volume, and T2 relaxation times for superficial and deep cartilage. STATISTICAL TESTS: Dice similarity coefficient (DSC) for segmentation accuracy. Lin's concordance correlation coefficient (CCC), Wilcoxon rank-sum tests, root-mean-squared error-coefficient-of-variation to quantify manual vs. automatic T2 and volume variations. Bland-Altman plots for manual vs. automatic T2 agreement. A P value < 0.05 was considered statistically significant. RESULTS: DSCs for the qDESS-trained model, 0.79-0.93, were higher than those for the OAI-DESS-trained model, 0.59-0.79. T2 and volume CCCs for the qDESS-trained model, 0.75-0.98 and 0.47-0.95, were higher than respective CCCs for the OAI-DESS-trained model, 0.35-0.90 and 0.13-0.84. Bland-Altman 95% limits of agreement for superficial and deep cartilage T2 were lower for the qDESS-trained model, ±2.4 msec and ±4.0 msec, than the OAI-DESS-trained model, ±4.4 msec and ±5.2 msec. DATA CONCLUSION: The qDESS-trained model may generalize well to independent qDESS datasets regardless of MR scanner, acquisition parameters, and subject population. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.


Assuntos
Cartilagem Articular , Aprendizado Profundo , Osteoartrite do Joelho , Feminino , Humanos , Estudos Retrospectivos , Cartilagem Articular/patologia , Imageamento por Ressonância Magnética/métodos , Algoritmos , Osteoartrite do Joelho/patologia
3.
MAGMA ; 36(5): 711-724, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37142852

RESUMO

PURPOSE: [Formula: see text] mapping is a powerful tool for studying osteoarthritis (OA) changes and bilateral imaging may be useful in investigating the role of between-knee asymmetry in OA onset and progression. The quantitative double-echo in steady-state (qDESS) can provide fast simultaneous bilateral knee [Formula: see text] and high-resolution morphometry for cartilage and meniscus. The qDESS uses an analytical signal model to compute [Formula: see text] relaxometry maps, which require knowledge of the flip angle (FA). In the presence of [Formula: see text] inhomogeneities, inconsistencies between the nominal and actual FA can affect the accuracy of [Formula: see text] measurements. We propose a pixel-wise [Formula: see text] correction method for qDESS [Formula: see text] mapping exploiting an auxiliary [Formula: see text] map to compute the actual FA used in the model. METHODS: The technique was validated in a phantom and in vivo with simultaneous bilateral knee imaging. [Formula: see text] measurements of femoral cartilage (FC) of both knees of six healthy participants were repeated longitudinally to investigate the association between [Formula: see text] variation and [Formula: see text]. RESULTS: The results showed that applying the [Formula: see text] correction mitigated [Formula: see text] variations that were driven by [Formula: see text] inhomogeneities. Specifically, [Formula: see text] left-right symmetry increased following the [Formula: see text] correction ([Formula: see text] = 0.74 > [Formula: see text] = 0.69). Without the [Formula: see text] correction, [Formula: see text] values showed a linear dependence with [Formula: see text]. The linear coefficient decreased using the [Formula: see text] correction (from 24.3 ± 1.6 ms to 4.1 ± 1.8) and the correlation was not statistically significant after the application of the Bonferroni correction (p value > 0.01). CONCLUSION: The study showed that [Formula: see text] correction could mitigate variations driven by the sensitivity of the qDESS [Formula: see text] mapping method to [Formula: see text], therefore, increasing the sensitivity to detect real biological changes. The proposed method may improve the robustness of bilateral qDESS [Formula: see text] mapping, allowing for an accurate and more efficient evaluation of OA pathways and pathophysiology through longitudinal and cross-sectional studies.


Assuntos
Articulação do Joelho , Imageamento por Ressonância Magnética , Humanos , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Articulação do Joelho/diagnóstico por imagem , Imageamento Tridimensional , Imagens de Fantasmas
4.
J Magn Reson Imaging ; 54(3): 840-851, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33763929

RESUMO

BACKGROUND: Injuries to the articular cartilage in the knee are common in jumping athletes, particularly high-level basketball players. Unfortunately, these are often diagnosed at a late stage of the disease process, after tissue loss has already occurred. PURPOSE/HYPOTHESIS: To evaluate longitudinal changes in knee articular cartilage and knee function in National Collegiate Athletic Association (NCAA) basketball players and their evolution over the competitive season and off-season. STUDY TYPE: Longitudinal, multisite cohort study. POPULATION: Thirty-two NCAA Division 1 athletes: 22 basketball players and 10 swimmers. FIELD STRENGTH/SEQUENCE: Bilateral magnetic resonance imaging (MRI) using a combined T1ρ and T2 magnetization-prepared angle-modulated portioned k-space spoiled gradient-echo snapshots (MAPSS) sequence at 3T. ASSESSMENT: We calculated T2 and T1ρ relaxation times to compare compositional cartilage changes between three timepoints: preseason 1, postseason 1, and preseason 2. Knee Osteoarthritis Outcome Scores (KOOS) were used to assess knee health. STATISTICAL TESTS: One-way variance model hypothesis test, general linear model, and chi-squared test. RESULTS: In the femoral articular cartilage of all athletes, we saw a global decrease in T2 and T1ρ relaxation times during the competitive season (all P < 0.05) and an increase in T2 and T1ρ relaxation times during the off-season (all P < 0.05). In the basketball players' femoral cartilage, the anterior and central compartments respectively had the highest T2 and T1ρ relaxation times following the competitive season and off-season. The basketball players had significantly lower KOOS measures in every domain compared with the swimmers: Pain (P < 0.05), Symptoms (P < 0.05), Function in Daily Living (P < 0.05), Function in Sport/Recreation (P < 0.05), and Quality of Life (P < 0.05). CONCLUSION: Our results indicate that T2 and T1ρ MRI can detect significant seasonal changes in the articular cartilage of basketball players and that there are regional differences in the articular cartilage that are indicative of basketball-specific stress on the femoral cartilage. This study demonstrates the potential of quantitative MRI to monitor global and regional cartilage health in athletes at risk of developing cartilage problems. LEVEL OF EVIDENCE: 2 Technical Efficacy Stage: 2.


Assuntos
Basquetebol , Cartilagem Articular , Osteoartrite do Joelho , Cartilagem Articular/diagnóstico por imagem , Estudos de Coortes , Humanos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Qualidade de Vida , Estações do Ano
5.
NMR Biomed ; 33(8): e4310, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32445515

RESUMO

Chemical exchange saturation transfer of glycosaminoglycans, gagCEST, is a quantitative MR technique that has potential for assessing cartilage proteoglycan content at field strengths of 7 T and higher. However, its utility at 3 T remains unclear. The objective of this work was to implement a rapid volumetric gagCEST sequence with higher gagCEST asymmetry at 3 T to evaluate its sensitivity to osteoarthritic changes in knee articular cartilage and in comparison with T2 and T1ρ measures. We hypothesize that gagCEST asymmetry at 3 T decreases with increasing severity of osteoarthritis (OA). Forty-two human volunteers, including 10 healthy subjects and 32 subjects with medial OA, were included in the study. Knee Injury and Osteoarthritis Outcome Scores (KOOS) were assessed for all subjects, and Kellgren-Lawrence grading was performed for OA volunteers. Healthy subjects were scanned consecutively at 3 T to assess the repeatability of the volumetric gagCEST sequence at 3 T. For healthy and OA subjects, gagCEST asymmetry and T2 and T1ρ relaxation times were calculated for the femoral articular cartilage to assess sensitivity to OA severity. Volumetric gagCEST imaging had higher gagCEST asymmetry than single-slice acquisitions (p = 0.015). The average scan-rescan coefficient of variation was 6.8%. There were no significant differences in average gagCEST asymmetry between younger and older healthy controls (p = 0.655) or between healthy controls and OA subjects (p = 0.310). T2 and T1ρ relaxation times were elevated in OA subjects (p < 0.001 for both) compared with healthy controls and both were moderately correlated with total KOOS scores (rho = -0.181 and rho = -0.332 respectively). The gagCEST technique developed here, with volumetric scan times under 10 min and high gagCEST asymmetry at 3 T, did not vary significantly between healthy subjects and those with mild-moderate OA. This further supports a limited utility for gagCEST imaging at 3 T for assessment of early changes in cartilage composition in OA.


Assuntos
Cartilagem Articular/química , Glicosaminoglicanos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Osteoartrite do Joelho/diagnóstico por imagem , Proteoglicanas/análise , Adulto , Idoso , Feminino , Fêmur/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/metabolismo , Reprodutibilidade dos Testes
6.
Bioengineering (Basel) ; 10(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36829701

RESUMO

We systematically evaluate the training methodology and efficacy of two inpainting-based pretext tasks of context prediction and context restoration for medical image segmentation using self-supervised learning (SSL). Multiple versions of self-supervised U-Net models were trained to segment MRI and CT datasets, each using a different combination of design choices and pretext tasks to determine the effect of these design choices on segmentation performance. The optimal design choices were used to train SSL models that were then compared with baseline supervised models for computing clinically-relevant metrics in label-limited scenarios. We observed that SSL pretraining with context restoration using 32 × 32 patches and Poission-disc sampling, transferring only the pretrained encoder weights, and fine-tuning immediately with an initial learning rate of 1 × 10-3 provided the most benefit over supervised learning for MRI and CT tissue segmentation accuracy (p < 0.001). For both datasets and most label-limited scenarios, scaling the size of unlabeled pretraining data resulted in improved segmentation performance. SSL models pretrained with this amount of data outperformed baseline supervised models in the computation of clinically-relevant metrics, especially when the performance of supervised learning was low. Our results demonstrate that SSL pretraining using inpainting-based pretext tasks can help increase the robustness of models in label-limited scenarios and reduce worst-case errors that occur with supervised learning.

7.
Cartilage ; 13(1_suppl): 747S-756S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34496667

RESUMO

OBJECTIVE: We evaluated a fully automated femoral cartilage segmentation model for measuring T2 relaxation values and longitudinal changes using multi-echo spin-echo (MESE) magnetic resonance imaging (MRI). We open sourced this model and developed a web app available at https://kl.stanford.edu into which users can drag and drop images to segment them automatically. DESIGN: We trained a neural network to segment femoral cartilage from MESE MRIs. Cartilage was divided into 12 subregions along medial-lateral, superficial-deep, and anterior-central-posterior boundaries. Subregional T2 values and four-year changes were calculated using a radiologist's segmentations (Reader 1) and the model's segmentations. These were compared using 28 held-out images. A subset of 14 images were also evaluated by a second expert (Reader 2) for comparison. RESULTS: Model segmentations agreed with Reader 1 segmentations with a Dice score of 0.85 ± 0.03. The model's estimated T2 values for individual subregions agreed with those of Reader 1 with an average Spearman correlation of 0.89 and average mean absolute error (MAE) of 1.34 ms. The model's estimated four-year change in T2 for individual subregions agreed with Reader 1 with an average correlation of 0.80 and average MAE of 1.72 ms. The model agreed with Reader 1 at least as closely as Reader 2 agreed with Reader 1 in terms of Dice score (0.85 vs. 0.75) and subregional T2 values. CONCLUSIONS: Assessments of cartilage health using our fully automated segmentation model agreed with those of an expert as closely as experts agreed with one another. This has the potential to accelerate osteoarthritis research.


Assuntos
Cartilagem Articular , Aprendizado Profundo , Cartilagem Articular/diagnóstico por imagem , Humanos , Joelho , Articulação do Joelho/diagnóstico por imagem , Software
8.
Am J Sports Med ; 47(14): 3414-3422, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31634003

RESUMO

BACKGROUND: Previous studies have shown that runners demonstrate elevated T2 and T1ρ values on magnetic resonance imaging (MRI) after running a marathon, with the greatest changes in the patellofemoral and medial compartment, which can persist after 3 months of reduced activity. Additionally, marathon running has been shown to increase serum inflammatory markers. Hyaluronic acid (HA) purportedly improves viscoelasticity of synovial fluid, serving as a lubricant while also having chondroprotective and anti-inflammatory effects. PURPOSE/HYPOTHESIS: The purpose was to investigate whether intra-articular HA injection can protect articular cartilage from injury attributed to marathon running. The hypothesis was that the addition of intra-articular HA 1 week before running a marathon would reduce the magnitude of early cartilage breakdown measured by MRI. STUDY DESIGN: Randomized controlled trial; Level of evidence, 2. METHODS: After institutional review board approval, 20 runners were randomized into receiving an intra-articular injection of HA or normal saline (NS) 1 week before running a marathon. Exclusionary criteria included any prior knee injury or surgery and having run >3 prior marathons. Baseline 3-T knee MRI was obtained within 48 hours before the marathon (approximately 5 days after injection). Follow-up 3-T MRI scans of the same knee were obtained 48 to 72 hours and 3 months after the marathon. The T2 and T1ρ relaxation times of articular cartilage were measured in 8 locations-the medial and lateral compartments (including 2 areas of each femoral condyle) and the patellofemoral joint. The statistical analysis compared changes in T2 and T1ρ relaxation times (ms) from baseline to immediate and 3-month postmarathon scans between the HA and NS groups with repeated measures analysis of variance. RESULTS: Fifteen runners completed the study: 6 women and 2 men in the HA group (mean age, 31 years; range, 23-50 years) and 6 women and 1 man in the NS group (mean age, 27 years; range, 20-49 years). There were no gross morphologic MRI changes after running the marathon. Postmarathon studies revealed no statistically significant changes between the HA and NS groups in all articular cartilage areas of the knee on both T2 and T1ρ relaxation times. CONCLUSION: Increased T2 and T1ρ relaxation times have been observed in marathon runners, suggesting early cartilage injury. The addition of intra-articular HA did not significantly affect relaxation times in all areas of the knee when compared with an NS control.


Assuntos
Cartilagem Articular/lesões , Glicoproteínas/administração & dosagem , Ácido Hialurônico/administração & dosagem , Traumatismos do Joelho/prevenção & controle , Adulto , Cartilagem Articular/diagnóstico por imagem , Feminino , Humanos , Injeções Intra-Articulares , Articulação do Joelho/cirurgia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Líquido Sinovial/efeitos dos fármacos , Adulto Jovem
9.
J Bone Joint Surg Am ; 101(2): e6, 2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30653051

RESUMO

BACKGROUND: The dissemination of evidence-based information into medical practice is essential to provide patients with optimal care and realize society's substantial investments in medical research. Effective information delivery and treatment utilization may lead to improvements in patient outcome, reductions in cost, and an overall lower burden on the health-care system. This study examines the dissemination of medical evidence following a first-time anterior shoulder dislocation (FTASD) and assesses the impact of potential dissemination strategies. METHODS: The state of evidence dissemination into clinical practice for FTASD was evaluated with use of the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) framework. The treatment pathway for patients with FTASDs was mapped and evaluated using data that were collected through an orthopaedic shoulder-specialist survey and with review of a claims database. RESULTS: A total of 1,755 patients with an FTASD were identified through a national claims database; 50% of patients followed up with a care provider within 30 days after an emergency department (ED) or urgent care visit. Based on shoulder-specialist survey data, physician estimates of the risk of redislocation within a 2-year window aligned with medical evidence 59% of the time. Only 29% of patients obtained information for FTASD that aligns with high-level medical evidence. CONCLUSIONS: There are gaps and deficiencies in the dissemination and application of evidence in the treatment of FTASDs. Specifically, patients have limited exposure to health-care encounters where appropriate information related to low rates of follow-up following ED or urgent care visits may be communicated. Evaluating the current state of practice and identifying areas of improvement for the dissemination of evidence regarding FTASDs can be achieved through application of the RE-AIM framework. Greater consideration and resourcing of dissemination and implementation strategies may improve the dissemination and the impact of existing medical evidence.


Assuntos
Medicina Baseada em Evidências , Disseminação de Informação , Luxação do Ombro/terapia , Adolescente , Adulto , Criança , Serviço Hospitalar de Emergência/estatística & dados numéricos , Feminino , Fidelidade a Diretrizes/normas , Humanos , Disseminação de Informação/métodos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA