Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(11): 2070-2086.e20, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38703770

RESUMO

The MYCN oncoprotein binds active promoters in a heterodimer with its partner protein MAX. MYCN also interacts with the nuclear exosome, a 3'-5' exoribonuclease complex, suggesting a function in RNA metabolism. Here, we show that MYCN forms stable high-molecular-weight complexes with the exosome and multiple RNA-binding proteins. MYCN binds RNA in vitro and in cells via a conserved sequence termed MYCBoxI. In cells, MYCN associates with thousands of intronic transcripts together with the ZCCHC8 subunit of the nuclear exosome targeting complex and enhances their processing. Perturbing exosome function results in global re-localization of MYCN from promoters to intronic RNAs. On chromatin, MYCN is then replaced by the MNT(MXD6) repressor protein, inhibiting MYCN-dependent transcription. RNA-binding-deficient alleles show that RNA-binding limits MYCN's ability to activate cell growth-related genes but is required for MYCN's ability to promote progression through S phase and enhance the stress resilience of neuroblastoma cells.


Assuntos
Proteína Proto-Oncogênica N-Myc , Proteínas Nucleares , Proteínas Oncogênicas , Proteínas de Ligação a RNA , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/genética , Regiões Promotoras Genéticas , Linhagem Celular Tumoral , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Exossomos/metabolismo , Exossomos/genética , Íntrons , Ligação Proteica , Núcleo Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Regulação Neoplásica da Expressão Gênica , RNA/metabolismo , RNA/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proliferação de Células
2.
PLoS Biol ; 22(1): e3002463, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289907

RESUMO

The emergence of successive Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) during 2020 to 2022, each exhibiting increased epidemic growth relative to earlier circulating variants, has created a need to understand the drivers of such growth. However, both pathogen biology and changing host characteristics-such as varying levels of immunity-can combine to influence replication and transmission of SARS-CoV-2 within and between hosts. Disentangling the role of variant and host in individual-level viral shedding of VOCs is essential to inform Coronavirus Disease 2019 (COVID-19) planning and response and interpret past epidemic trends. Using data from a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening, we developed a Bayesian hierarchical model to reconstruct individual-level viral kinetics and estimate how different factors shaped viral dynamics, measured by PCR cycle threshold (Ct) values over time. Jointly accounting for both interindividual variation in Ct values and complex host characteristics-such as vaccination status, exposure history, and age-we found that age and number of prior exposures had a strong influence on peak viral replication. Older individuals and those who had at least 5 prior antigen exposures to vaccination and/or infection typically had much lower levels of shedding. Moreover, we found evidence of a correlation between the speed of early shedding and duration of incubation period when comparing different VOCs and age groups. Our findings illustrate the value of linking information on participant characteristics, symptom profile and infecting variant with prospective PCR sampling, and the importance of accounting for increasingly complex population exposure landscapes when analysing the viral kinetics of VOCs. Trial Registration: The Legacy study is a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening for SARS-CoV-2 at University College London Hospitals or at the Francis Crick Institute (NCT04750356) (22,23). The Legacy study was approved by London Camden and Kings Cross Health Research Authority Research and Ethics committee (IRAS number 286469). The Legacy study was approved by London Camden and Kings Cross Health Research Authority Research and Ethics committee (IRAS number 286469) and is sponsored by University College London Hospitals. Written consent was given by all participants.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , SARS-CoV-2/genética , Teorema de Bayes , COVID-19/epidemiologia , Estudos Prospectivos
3.
PLoS Comput Biol ; 20(3): e1011967, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517931

RESUMO

The epidemiological characteristics of SARS-CoV-2 transmission have changed over the pandemic due to emergence of new variants. A decrease in the generation or serial intervals would imply a shortened transmission timescale and, hence, outbreak response measures would need to expand at a faster rate. However, there are challenges in measuring these intervals. Alongside epidemiological changes, factors like varying delays in outbreak response, social contact patterns, dependence on the growth phase of an outbreak, and effects of exposure to multiple infectors can also influence measured generation or serial intervals. To guide real-time interpretation of variant data, we simulated concurrent changes in the aforementioned factors and estimated the statistical power to detect a change in the generation and serial interval. We compared our findings to the reported decrease or lack thereof in the generation and serial intervals of different SARS-CoV-2 variants. Our study helps to clarify contradictory outbreak observations and informs the required sample sizes under certain outbreak conditions to ensure that future studies of generation and serial intervals are adequately powered.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Surtos de Doenças , Pandemias , Previsões , Biologia
4.
PLoS Pathog ; 18(10): e1010887, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36223427

RESUMO

Plasmodium parasites are reliant on the Apicomplexan AP2 (ApiAP2) transcription factor family to regulate gene expression programs. AP2 DNA binding domains have no homologs in the human or mosquito host genomes, making them potential antimalarial drug targets. Using an in-silico screen to dock thousands of small molecules into the crystal structure of the AP2-EXP (Pf3D7_1466400) AP2 domain (PDB:3IGM), we identified putative AP2-EXP interacting compounds. Four compounds were found to block DNA binding by AP2-EXP and at least one additional ApiAP2 protein. Our top ApiAP2 competitor compound perturbs the transcriptome of P. falciparum trophozoites and results in a decrease in abundance of log2 fold change > 2 for 50% (46/93) of AP2-EXP target genes. Additionally, two ApiAP2 competitor compounds have multi-stage anti-Plasmodium activity against blood and mosquito stage parasites. In summary, we describe a novel set of antimalarial compounds that interact with AP2 DNA binding domains. These compounds may be used for future chemical genetic interrogation of ApiAP2 proteins or serve as starting points for a new class of antimalarial therapeutics.


Assuntos
Antimaláricos , Proteínas de Ligação a DNA , Plasmodium , Humanos , Antimaláricos/farmacologia , Antimaláricos/metabolismo , DNA/metabolismo , Plasmodium/efeitos dos fármacos , Plasmodium/genética , Proteínas de Protozoários/metabolismo , Proteínas de Ligação a DNA/metabolismo
5.
PLoS Med ; 20(9): e1004283, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37683046

RESUMO

BACKGROUND: Effective Coronavirus Disease 2019 (COVID-19) response relies on good knowledge of population infection dynamics, but owing to under-ascertainment and delays in symptom-based reporting, obtaining reliable infection data has typically required large dedicated local population studies. Although many countries implemented Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) testing among travellers, it remains unclear how accurately arrival testing data can capture international patterns of infection, because those arrival testing data were rarely reported systematically, and predeparture testing was often in place as well, leading to nonrepresentative infection status among arrivals. METHODS AND FINDINGS: In French Polynesia, testing data were reported systematically with enforced predeparture testing type and timing, making it possible to adjust for nonrepresentative infection status among arrivals. Combining statistical models of polymerase chain reaction (PCR) positivity with data on international travel protocols, we reconstructed estimates of prevalence at departure using only testing data from arrivals. We then applied this estimation approach to the United States of America and France, using data from over 220,000 tests from travellers arriving into French Polynesia between July 2020 and March 2022. We estimated a peak infection prevalence at departure of 2.1% (95% credible interval: 1.7, 2.6%) in France and 1% (95% CrI: 0.63, 1.4%) in the USA in late 2020/early 2021, with prevalence of 4.6% (95% CrI: 3.9, 5.2%) and 4.3% (95% CrI: 3.6, 5%), respectively, estimated for the Omicron BA.1 waves in early 2022. We found that our infection estimates were a leading indicator of later reported case dynamics, as well as being consistent with subsequent observed changes in seroprevalence over time. We did not have linked data on traveller demography or unbiased domestic infection estimates (e.g., from random community infection surveys) in the USA and France. However, our methodology would allow for the incorporation of prior data from additional sources if available in future. CONCLUSIONS: As well as elucidating previously unmeasured infection dynamics in these countries, our analysis provides a proof-of-concept for scalable and accurate leading indicator of global infections during future pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Prevalência , Estudos Soroepidemiológicos , França/epidemiologia
6.
BMC Med ; 21(1): 97, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927576

RESUMO

BACKGROUND: Understanding the overall effectiveness of non-pharmaceutical interventions to control the COVID-19 pandemic and reduce the burden of disease is crucial for future pandemic planning. However, quantifying the effectiveness of specific control measures and the extent of missed infections, in the absence of early large-scale serological surveys or random community testing, has remained challenging. METHODS: Combining data on notified local COVID-19 cases with known and unknown sources of infections in Singapore with a branching process model, we reconstructed the incidence of missed infections during the early phase of the wild-type SARS-CoV-2 and Delta variant transmission. We then estimated the relative effectiveness of border control measures, case finding and contact tracing when there was no or low vaccine coverage in the population. We compared the risk of ICU admission and death between the wild-type SARS-CoV-2 and the Delta variant in notified cases and all infections. RESULTS: We estimated strict border control measures were associated with 0.2 (95% credible intervals, CrI 0.04-0.8) missed imported infections per notified case between July and December 2020, a decline from around 1 missed imported infection per notified case in the early phases of the pandemic. Contact tracing was estimated to identify 78% (95% CrI 62-93%) of the secondary infections generated by notified cases before the partial lockdown in Apr 2020, but this declined to 63% (95% CrI 56-71%) during the lockdown and rebounded to 78% (95% CrI 58-94%) during reopening in Jul 2020. The contribution of contact tracing towards overall outbreak control also hinges on ability to find cases with unknown sources of infection: 42% (95% CrI 12-84%) of such cases were found prior to the lockdown; 10% (95% CrI 7-15%) during the lockdown; 47% (95% CrI 17-85%) during reopening, due to increased testing capacity and health-seeking behaviour. We estimated around 63% (95% CrI 49-78%) of the wild-type SARS-CoV-2 infections were undetected during 2020 and around 70% (95% CrI 49-91%) for the Delta variant in 2021. CONCLUSIONS: Combining models with case linkage data enables evaluation of the effectiveness of different components of outbreak control measures, and provides more reliable situational awareness when some cases are missed. Using such approaches for early identification of the weakest link in containment efforts could help policy makers to better redirect limited resources to strengthen outbreak control.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Busca de Comunicante , Controle de Doenças Transmissíveis , Pandemias/prevenção & controle
7.
Euro Surveill ; 28(21)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37227301

RESUMO

BackgroundSerological surveys have been the gold standard to estimate numbers of SARS-CoV-2 infections, the dynamics of the epidemic, and disease severity. Serological assays have decaying sensitivity with time that can bias their results, but there is a lack of guidelines to account for this phenomenon for SARS-CoV-2.AimOur goal was to assess the sensitivity decay of seroassays for detecting SARS-CoV-2 infections, the dependence of this decay on assay characteristics, and to provide a simple method to correct for this phenomenon.MethodsWe performed a systematic review and meta-analysis of SARS-CoV-2 serology studies. We included studies testing previously diagnosed, unvaccinated individuals, and excluded studies of cohorts highly unrepresentative of the general population (e.g. hospitalised patients).ResultsOf the 488 screened studies, 76 studies reporting on 50 different seroassays were included in the analysis. Sensitivity decay depended strongly on the antigen and the analytic technique used by the assay, with average sensitivities ranging between 26% and 98% at 6 months after infection, depending on assay characteristics. We found that a third of the included assays departed considerably from manufacturer specifications after 6 months.ConclusionsSeroassay sensitivity decay depends on assay characteristics, and for some types of assays, it can make manufacturer specifications highly unreliable. We provide a tool to correct for this phenomenon and to assess the risk of decay for a given assay. Our analysis can guide the design and interpretation of serosurveys for SARS-CoV-2 and other pathogens and quantify systematic biases in the existing serology literature.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Sensibilidade e Especificidade , Teste para COVID-19 , Testes Sorológicos/métodos , Anticorpos Antivirais
8.
BMC Public Health ; 22(1): 716, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410184

RESUMO

BACKGROUND: The COVID-19 epidemic has differentially impacted communities across England, with regional variation in rates of confirmed cases, hospitalisations and deaths. Measurement of this burden changed substantially over the first months, as surveillance was expanded to accommodate the escalating epidemic. Laboratory confirmation was initially restricted to clinical need ("pillar 1") before expanding to community-wide symptomatics ("pillar 2"). This study aimed to ascertain whether inconsistent measurement of case data resulting from varying testing coverage could be reconciled by drawing inference from COVID-19-related deaths. METHODS: We fit a Bayesian spatio-temporal model to weekly COVID-19-related deaths per local authority (LTLA) throughout the first wave (1 January 2020-30 June 2020), adjusting for the local epidemic timing and the age, deprivation and ethnic composition of its population. We combined predictions from this model with case data under community-wide, symptomatic testing and infection prevalence estimates from the ONS infection survey, to infer the likely trajectory of infections implied by the deaths in each LTLA. RESULTS: A model including temporally- and spatially-correlated random effects was found to best accommodate the observed variation in COVID-19-related deaths, after accounting for local population characteristics. Predicted case counts under community-wide symptomatic testing suggest a total of 275,000-420,000 cases over the first wave - a median of over 100,000 additional to the total confirmed in practice under varying testing coverage. This translates to a peak incidence of around 200,000 total infections per week across England. The extent to which estimated total infections are reflected in confirmed case counts was found to vary substantially across LTLAs, ranging from 7% in Leicester to 96% in Gloucester with a median of 23%. CONCLUSIONS: Limitations in testing capacity biased the observed trajectory of COVID-19 infections throughout the first wave. Basing inference on COVID-19-related mortality and higher-coverage testing later in the time period, we could explore the extent of this bias more explicitly. Evidence points towards substantial under-representation of initial growth and peak magnitude of infections nationally, to which different parts of the country contribute unequally.


Assuntos
COVID-19 , Teorema de Bayes , COVID-19/epidemiologia , Efeitos Psicossociais da Doença , Humanos , Armazenamento e Recuperação da Informação , SARS-CoV-2
9.
Euro Surveill ; 27(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34991776

RESUMO

We estimate the potential remaining COVID-19 hospitalisation and death burdens in 19 European countries by estimating the proportion of each country's population that has acquired immunity to severe disease through infection or vaccination. Our results suggest many European countries could still face high burdens of hospitalisations and deaths, particularly those with lower vaccination coverage, less historical transmission and/or older populations. Continued non-pharmaceutical interventions and efforts to achieve high vaccination coverage are required in these countries to limit severe COVID-19 outcomes.


Assuntos
COVID-19 , Europa (Continente)/epidemiologia , Hospitalização , Humanos , SARS-CoV-2 , Vacinação
10.
BMC Med ; 19(1): 106, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33902581

RESUMO

BACKGROUND: Routine asymptomatic testing using RT-PCR of people who interact with vulnerable populations, such as medical staff in hospitals or care workers in care homes, has been employed to help prevent outbreaks among vulnerable populations. Although the peak sensitivity of RT-PCR can be high, the probability of detecting an infection will vary throughout the course of an infection. The effectiveness of routine asymptomatic testing will therefore depend on testing frequency and how PCR detection varies over time. METHODS: We fitted a Bayesian statistical model to a dataset of twice weekly PCR tests of UK healthcare workers performed by self-administered nasopharyngeal swab, regardless of symptoms. We jointly estimated times of infection and the probability of a positive PCR test over time following infection; we then compared asymptomatic testing strategies by calculating the probability that a symptomatic infection is detected before symptom onset and the probability that an asymptomatic infection is detected within 7 days of infection. RESULTS: We estimated that the probability that the PCR test detected infection peaked at 77% (54-88%) 4 days after infection, decreasing to 50% (38-65%) by 10 days after infection. Our results suggest a substantially higher probability of detecting infections 1-3 days after infection than previously published estimates. We estimated that testing every other day would detect 57% (33-76%) of symptomatic cases prior to onset and 94% (75-99%) of asymptomatic cases within 7 days if test results were returned within a day. CONCLUSIONS: Our results suggest that routine asymptomatic testing can enable detection of a high proportion of infected individuals early in their infection, provided that the testing is frequent and the time from testing to notification of results is sufficiently fast.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Reação em Cadeia da Polimerase/métodos , Teorema de Bayes , COVID-19/patologia , Feminino , Humanos , Masculino
11.
Euro Surveill ; 26(39)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34596018

RESUMO

BackgroundTo mitigate SARS-CoV-2 transmission risks from international air travellers, many countries implemented a combination of up to 14 days of self-quarantine upon arrival plus PCR testing in the early stages of the COVID-19 pandemic in 2020.AimTo assess the effectiveness of quarantine and testing of international travellers to reduce risk of onward SARS-CoV-2 transmission into a destination country in the pre-COVID-19 vaccination era.MethodsWe used a simulation model of air travellers arriving in the United Kingdom from the European Union or the United States, incorporating timing of infection stages while varying quarantine duration and timing and number of PCR tests.ResultsQuarantine upon arrival with a PCR test on day 7 plus a 1-day delay for results can reduce the number of infectious arriving travellers released into the community by a median 94% (95% uncertainty interval (UI): 89-98) compared with a no quarantine/no test scenario. This reduction is similar to that achieved by a 14-day quarantine period (median > 99%; 95% UI: 98-100). Even shorter quarantine periods can prevent a substantial amount of transmission; all strategies in which travellers spend at least 5 days (mean incubation period) in quarantine and have at least one negative test before release are highly effective (median reduction 89%; 95% UI: 83-95)).ConclusionThe effect of different screening strategies impacts asymptomatic and symptomatic individuals differently. The choice of an optimal quarantine and testing strategy for unvaccinated air travellers may vary based on the number of possible imported infections relative to domestic incidence.


Assuntos
COVID-19 , SARS-CoV-2 , Vacinas contra COVID-19 , Humanos , Pandemias , Quarentena , Reino Unido/epidemiologia
12.
BMC Genomics ; 21(1): 395, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513207

RESUMO

BACKGROUND: Plasmodium parasites undergo several major developmental transitions during their complex lifecycle, which are enabled by precisely ordered gene expression programs. Transcriptomes from the 48-h blood stages of the major human malaria parasite Plasmodium falciparum have been described using cDNA microarrays and RNA-seq, but these assays have not always performed well within non-coding regions, where the AT-content is often 90-95%. RESULTS: We developed a directional, amplification-free RNA-seq protocol (DAFT-seq) to reduce bias against AT-rich cDNA, which we have applied to three strains of P. falciparum (3D7, HB3 and IT). While strain-specific differences were detected, overall there is strong conservation between the transcriptional profiles. For the 3D7 reference strain, transcription was detected from 89% of the genome, with over 78% of the genome transcribed into mRNAs. We also find that transcription from bidirectional promoters frequently results in non-coding, antisense transcripts. These datasets allowed us to refine the 5' and 3' untranslated regions (UTRs), which can be variable, long (> 1000 nt), and often overlap those of adjacent transcripts. CONCLUSIONS: The approaches applied in this study allow a refined description of the transcriptional landscape of P. falciparum and demonstrate that very little of the densely packed P. falciparum genome is inactive or redundant. By capturing the 5' and 3' ends of mRNAs, we reveal both constant and dynamic use of transcriptional start sites across the intraerythrocytic developmental cycle that will be useful in guiding the definition of regulatory regions for use in future experimental gene expression studies.


Assuntos
Perfilação da Expressão Gênica/métodos , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Humanos , Estágios do Ciclo de Vida , Técnicas de Amplificação de Ácido Nucleico/métodos , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , RNA Mensageiro/genética , Especificidade da Espécie
13.
BMC Med ; 18(1): 259, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814572

RESUMO

BACKGROUND: To contain the spread of COVID-19, a cordon sanitaire was put in place in Wuhan prior to the Lunar New Year, on 23 January 2020. We assess the efficacy of the cordon sanitaire to delay the introduction and onset of local transmission of COVID-19 in other major cities in mainland China. METHODS: We estimated the number of infected travellers from Wuhan to other major cities in mainland China from November 2019 to February 2020 using previously estimated COVID-19 prevalence in Wuhan and publicly available mobility data. We focused on Beijing, Chongqing, Hangzhou, and Shenzhen as four representative major cities to identify the potential independent contribution of the cordon sanitaire and holiday travel. To do this, we simulated outbreaks generated by infected arrivals in these destination cities using stochastic branching processes. We also modelled the effect of the cordon sanitaire in combination with reduced transmissibility scenarios to simulate the effect of local non-pharmaceutical interventions. RESULTS: We find that in the four cities, given the potentially high prevalence of COVID-19 in Wuhan between December 2019 and early January 2020, local transmission may have been seeded as early as 1-8 January 2020. By the time the cordon sanitaire was imposed, infections were likely in the thousands. The cordon sanitaire alone did not substantially affect the epidemic progression in these cities, although it may have had some effect in smaller cities. Reduced transmissibility resulted in a notable decrease in the incidence of infection in the four studied cities. CONCLUSIONS: Our results indicate that sustained transmission was likely occurring several weeks prior to the implementation of the cordon sanitaire in four major cities of mainland China and that the observed decrease in incidence was likely attributable to other non-pharmaceutical, transmission-reducing interventions.


Assuntos
Betacoronavirus , Infecções por Coronavirus/prevenção & controle , Política de Saúde , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Viagem , COVID-19 , China/epidemiologia , Cidades , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Humanos , Incidência , Modelos Teóricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Prevalência , SARS-CoV-2
14.
BMC Med ; 18(1): 324, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33050951

RESUMO

BACKGROUND: The health impact of COVID-19 may differ in African settings as compared to countries in Europe or China due to demographic, epidemiological, environmental and socio-economic factors. We evaluated strategies to reduce SARS-CoV-2 burden in African countries, so as to support decisions that balance minimising mortality, protecting health services and safeguarding livelihoods. METHODS: We used a Susceptible-Exposed-Infectious-Recovered mathematical model, stratified by age, to predict the evolution of COVID-19 epidemics in three countries representing a range of age distributions in Africa (from oldest to youngest average age: Mauritius, Nigeria and Niger), under various effectiveness assumptions for combinations of different non-pharmaceutical interventions: self-isolation of symptomatic people, physical distancing and 'shielding' (physical isolation) of the high-risk population. We adapted model parameters to better represent uncertainty about what might be expected in African populations, in particular by shifting the distribution of severity risk towards younger ages and increasing the case-fatality ratio. We also present sensitivity analyses for key model parameters subject to uncertainty. RESULTS: We predicted median symptomatic attack rates over the first 12 months of 23% (Niger) to 42% (Mauritius), peaking at 2-4 months, if epidemics were unmitigated. Self-isolation while symptomatic had a maximum impact of about 30% on reducing severe cases, while the impact of physical distancing varied widely depending on percent contact reduction and R0. The effect of shielding high-risk people, e.g. by rehousing them in physical isolation, was sensitive mainly to residual contact with low-risk people, and to a lesser extent to contact among shielded individuals. Mitigation strategies incorporating self-isolation of symptomatic individuals, moderate physical distancing and high uptake of shielding reduced predicted peak bed demand and mortality by around 50%. Lockdowns delayed epidemics by about 3 months. Estimates were sensitive to differences in age-specific social mixing patterns, as published in the literature, and assumptions on transmissibility, infectiousness of asymptomatic cases and risk of severe disease or death by age. CONCLUSIONS: In African settings, as elsewhere, current evidence suggests large COVID-19 epidemics are expected. However, African countries have fewer means to suppress transmission and manage cases. We found that self-isolation of symptomatic persons and general physical distancing are unlikely to avert very large epidemics, unless distancing takes the form of stringent lockdown measures. However, both interventions help to mitigate the epidemic. Shielding of high-risk individuals can reduce health service demand and, even more markedly, mortality if it features high uptake and low contact of shielded and unshielded people, with no increase in contact among shielded people. Strategies combining self-isolation, moderate physical distancing and shielding could achieve substantial reductions in mortality in African countries. Temporary lockdowns, where socioeconomically acceptable, can help gain crucial time for planning and expanding health service capacity.


Assuntos
Infecções por Coronavirus/prevenção & controle , Modelos Biológicos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Adolescente , Adulto , Distribuição por Idade , Idoso de 80 Anos ou mais , Betacoronavirus , COVID-19 , Criança , Pré-Escolar , Efeitos Psicossociais da Doença , Epidemias , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Níger , Nigéria , Distância Psicológica , SARS-CoV-2 , Incerteza , Adulto Jovem
15.
BMC Med ; 18(1): 332, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33087179

RESUMO

BACKGROUND: Asymptomatic or subclinical SARS-CoV-2 infections are often unreported, which means that confirmed case counts may not accurately reflect underlying epidemic dynamics. Understanding the level of ascertainment (the ratio of confirmed symptomatic cases to the true number of symptomatic individuals) and undetected epidemic progression is crucial to informing COVID-19 response planning, including the introduction and relaxation of control measures. Estimating case ascertainment over time allows for accurate estimates of specific outcomes such as seroprevalence, which is essential for planning control measures. METHODS: Using reported data on COVID-19 cases and fatalities globally, we estimated the proportion of symptomatic cases (i.e. any person with any of fever ≥ 37.5 °C, cough, shortness of breath, sudden onset of anosmia, ageusia or dysgeusia illness) that were reported in 210 countries and territories, given those countries had experienced more than ten deaths. We used published estimates of the baseline case fatality ratio (CFR), which was adjusted for delays and under-ascertainment, then calculated the ratio of this baseline CFR to an estimated local delay-adjusted CFR to estimate the level of under-ascertainment in a particular location. We then fit a Bayesian Gaussian process model to estimate the temporal pattern of under-ascertainment. RESULTS: Based on reported cases and deaths, we estimated that, during March 2020, the median percentage of symptomatic cases detected across the 84 countries which experienced more than ten deaths ranged from 2.4% (Bangladesh) to 100% (Chile). Across the ten countries with the highest number of total confirmed cases as of 6 July 2020, we estimated that the peak number of symptomatic cases ranged from 1.4 times (Chile) to 18 times (France) larger than reported. Comparing our model with national and regional seroprevalence data where available, we find that our estimates are consistent with observed values. Finally, we estimated seroprevalence for each country. As of 7 June, our seroprevalence estimates range from 0% (many countries) to 13% (95% CrI 5.6-24%) (Belgium). CONCLUSIONS: We found substantial under-ascertainment of symptomatic cases, particularly at the peak of the first wave of the SARS-CoV-2 pandemic, in many countries. Reported case counts will therefore likely underestimate the rate of outbreak growth initially and underestimate the decline in the later stages of an epidemic. Although there was considerable under-reporting in many locations, our estimates were consistent with emerging serological data, suggesting that the proportion of each country's population infected with SARS-CoV-2 worldwide is generally low.


Assuntos
Infecções por Coronavirus/epidemiologia , Pandemias , Pneumonia Viral/epidemiologia , Teorema de Bayes , Betacoronavirus , COVID-19 , Humanos , SARS-CoV-2 , Estudos Soroepidemiológicos
16.
Euro Surveill ; 25(12)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32234121

RESUMO

Adjusting for delay from confirmation to death, we estimated case and infection fatality ratios (CFR, IFR) for coronavirus disease (COVID-19) on the Diamond Princess ship as 2.6% (95% confidence interval (CI): 0.89-6.7) and 1.3% (95% CI: 0.38-3.6), respectively. Comparing deaths on board with expected deaths based on naive CFR estimates from China, we estimated CFR and IFR in China to be 1.2% (95% CI: 0.3-2.7) and 0.6% (95% CI: 0.2-1.3), respectively.


Assuntos
Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/mortalidade , Coronavirus/isolamento & purificação , Surtos de Doenças/prevenção & controle , Pneumonia Viral/mortalidade , Navios , Viagem , Adolescente , Adulto , Idoso , Betacoronavirus , COVID-19 , Teste para COVID-19 , Criança , Pré-Escolar , Busca de Comunicante , Coronavirus/genética , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/transmissão , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mortalidade , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/transmissão , Sistemas Automatizados de Assistência Junto ao Leito , Reação em Cadeia da Polimerase , Fatores de Risco , SARS-CoV-2 , Adulto Jovem
17.
Theor Popul Biol ; 126: 19-32, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30660607

RESUMO

Recombination in mammals is not uniformly distributed along the chromosome but concentrated in small regions known as recombination hotspots. Recombination starts with the double-strand break of a chromosomal sequence and results in the transmission of the sequence that does not break (preventing recombination) more often than the sequence that breaks (allowing recombination). Thus recombination itself renders individual recombination hotspots inactive and over time should drive them to extinction in the genome. Empirical evidence shows that individual recombination hotspots die but, far from being driven to extinction, they are abundant in the genome: a contradiction referred to as the Recombination Hotspot Paradox. What saves recombination hotspots from extinction? The current answer relies in the formation of new recombination hotspots in new genomic sites driven by viability selection in favor of recombination. Here we formulate a population genetics model that incorporates the molecular mechanism initiating recombination in mammals (PRDM9-like genes), to provide an alternative solution to the paradox. We find that weak selection allows individual recombination hotspots to become inactive (die) while saving them from extinction in the genome by driving their re-activation (resurrection). Our model shows that when selection for recombination is weak, the introduction of rare variants causes recombination sites to oscillate between hot and cold phenotypes with a recombination hotspot dying only to come back. Counter-intuitively, we find that low viability selection leaves a hard selective sweep signature in the genome, with the selective sweep at the recombination hotspot being the hardest when viability selection is the lowest. Our model can help to understand the rapid evolution of PRDM9, the co-existence of two types of hotspots, the life expectancy of hotspots, and the volatility of the recombinational landscape (with hotspots rarely being shared between closely related species).


Assuntos
Evolução Molecular , Mamíferos/genética , Modelos Genéticos , Recombinação Genética , Animais , Cromossomos , Genética Populacional , Histona-Lisina N-Metiltransferase , Humanos , Fenótipo , Seleção Genética
18.
J Theor Biol ; 477: 84-95, 2019 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-31202791

RESUMO

Genetic systems with multiple loci can have complex dynamics. For example, mean fitness need not always increase and stable cycling is possible. Here, we study the dynamics of a genetic system inspired by the molecular biology of recognition-dependent double strand breaks and repair as it happens in recombination hotspots. The model shows slow-fast dynamics in which the system converges to the quasi-linkage equilibrium (QLE) manifold. On this manifold, sustained cycling is possible as the dynamics approach a heteroclinic cycle, in which allele frequencies alternate between near extinction and near fixation. We find a closed-form approximation for the QLE manifold and use it to simplify the model. For the simplified model, we can analytically calculate the stability of the heteroclinic cycle. In the discrete-time model the cycle is always stable; in a continuous-time approximation, the cycle is always unstable. This demonstrates that complex dynamics are possible under quasi-linkage equilibrium.


Assuntos
Epistasia Genética , Conversão Gênica , Desequilíbrio de Ligação , Modelos Genéticos , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA