Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 106(4): 570-583, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32197074

RESUMO

EIF2AK1 and EIF2AK2 encode members of the eukaryotic translation initiation factor 2 alpha kinase (EIF2AK) family that inhibits protein synthesis in response to physiologic stress conditions. EIF2AK2 is also involved in innate immune response and the regulation of signal transduction, apoptosis, cell proliferation, and differentiation. Despite these findings, human disorders associated with deleterious variants in EIF2AK1 and EIF2AK2 have not been reported. Here, we describe the identification of nine unrelated individuals with heterozygous de novo missense variants in EIF2AK1 (1/9) or EIF2AK2 (8/9). Features seen in these nine individuals include white matter alterations (9/9), developmental delay (9/9), impaired language (9/9), cognitive impairment (8/9), ataxia (6/9), dysarthria in probands with verbal ability (6/9), hypotonia (7/9), hypertonia (6/9), and involuntary movements (3/9). Individuals with EIF2AK2 variants also exhibit neurological regression in the setting of febrile illness or infection. We use mammalian cell lines and proband-derived fibroblasts to further confirm the pathogenicity of variants in these genes and found reduced kinase activity. EIF2AKs phosphorylate eukaryotic translation initiation factor 2 subunit 1 (EIF2S1, also known as EIF2α), which then inhibits EIF2B activity. Deleterious variants in genes encoding EIF2B proteins cause childhood ataxia with central nervous system hypomyelination/vanishing white matter (CACH/VWM), a leukodystrophy characterized by neurologic regression in the setting of febrile illness and other stressors. Our findings indicate that EIF2AK2 missense variants cause a neurodevelopmental syndrome that may share phenotypic and pathogenic mechanisms with CACH/VWM.


Assuntos
Deficiências do Desenvolvimento/genética , Variação Genética/genética , Leucoencefalopatias/genética , Malformações do Sistema Nervoso/genética , eIF-2 Quinase/genética , Adolescente , Ataxia/genética , Criança , Pré-Escolar , Feminino , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Lactente , Masculino , Substância Branca/patologia
2.
Am J Med Genet A ; 191(11): 2743-2748, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37675855

RESUMO

Moebius syndrome is a congenital cranial dysinnervation disorder (CCDD) that presents with nonprogressive cranial nerve (CN) VI and VII palsies resulting in facial weakness and inability to abduct the eye(s). While many CCDDs have an underlying genetic cause, the etiology of Moebius syndrome remains unclear as most cases are sporadic. Here, we describe a pair of monochorionic, diamniotic twin girls; one with normal growth and development, and one with micrognathia, reduced facial expression, and poor feeding. Magnetic resonance imaging of the brain performed on the affected twin at 19 months of age showed severely hypoplastic or absent CN IV bilaterally, left CN VI smaller than right, and bilateral hypoplastic CN VII and IX, consistent with a diagnosis of a CCDD, most similar to that of Moebius syndrome. Genomic sequencing was performed on each twin and data was assessed for discordant variants, as well as variants in novel and CCDD-associated genes. No pathogenic, likely pathogenic, or variants of uncertain significance were identified in genes known to be associated with CCDDs or other congenital facial weakness conditions. This family provides further evidence in favor of a stochastic event as the etiology in Moebius syndrome, rather than a monogenic condition.

3.
Brain ; 145(8): 2721-2729, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35293990

RESUMO

Voltage-gated calcium (CaV) channels form three subfamilies (CaV1-3). The CaV1 and CaV2 channels are heteromeric, consisting of an α1 pore-forming subunit, associated with auxiliary CaVß and α2δ subunits. The α2δ subunits are encoded in mammals by four genes, CACNA2D1-4. They play important roles in trafficking and function of the CaV channel complexes. Here we report biallelic variants in CACNA2D1, encoding the α2δ-1 protein, in two unrelated individuals showing a developmental and epileptic encephalopathy. Patient 1 has a homozygous frameshift variant c.818_821dup/p.(Ser275Asnfs*13) resulting in nonsense-mediated mRNA decay of the CACNA2D1 transcripts, and absence of α2δ-1 protein detected in patient-derived fibroblasts. Patient 2 is compound heterozygous for an early frameshift variant c.13_23dup/p.(Leu9Alafs*5), highly probably representing a null allele and a missense variant c.626G>A/p.(Gly209Asp). Our functional studies show that this amino-acid change severely impairs the function of α2δ-1 as a calcium channel subunit, with strongly reduced trafficking of α2δ-1G209D to the cell surface and a complete inability of α2δ-1G209D to increase the trafficking and function of CaV2 channels. Thus, biallelic loss-of-function variants in CACNA2D1 underlie the severe neurodevelopmental disorder in these two patients. Our results demonstrate the critical importance and non-interchangeability of α2δ-1 and other α2δ proteins for normal human neuronal development.


Assuntos
Canais de Cálcio Tipo N , Epilepsia , Idade de Início , Animais , Cálcio , Canais de Cálcio , Canais de Cálcio Tipo L , Membrana Celular , Humanos , Mamíferos , Neurônios
4.
J Med Genet ; 59(7): 669-677, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34321324

RESUMO

BACKGROUND: Variants in HECW2 have recently been reported to cause a neurodevelopmental disorder with hypotonia, seizures and impaired language; however, only six variants have been reported and the clinical characteristics have only broadly been defined. METHODS: Molecular and clinical data were collected from clinical and research cohorts. Massive parallel sequencing was performed and identified individuals with a HECW2-related neurodevelopmental disorder. RESULTS: We identified 13 novel missense variants in HECW2 in 22 unpublished cases, of which 18 were confirmed to have a de novo variant. In addition, we reviewed the genotypes and phenotypes of previously reported and new cases with HECW2 variants (n=35 cases). All variants identified are missense, and the majority of likely pathogenic and pathogenic variants are located in or near the C-terminal HECT domain (88.2%). We identified several clustered variants and four recurrent variants (p.(Arg1191Gln);p.(Asn1199Lys);p.(Phe1327Ser);p.(Arg1330Trp)). Two variants, (p.(Arg1191Gln);p.(Arg1330Trp)), accounted for 22.9% and 20% of cases, respectively. Clinical characterisation suggests complete penetrance for hypotonia with or without spasticity (100%), developmental delay/intellectual disability (100%) and developmental language disorder (100%). Other common features are behavioural problems (88.9%), vision problems (83.9%), motor coordination/movement (75%) and gastrointestinal issues (70%). Seizures were present in 61.3% of individuals. Genotype-phenotype analysis shows that HECT domain variants are more frequently associated with cortical visual impairment and gastrointestinal issues. Seizures were only observed in individuals with variants in or near the HECT domain. CONCLUSION: We provide a comprehensive review and expansion of the genotypic and phenotypic spectrum of HECW2 disorders, aiding future molecular and clinical diagnosis and management.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Ubiquitina-Proteína Ligases , Genótipo , Humanos , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Hipotonia Muscular/patologia , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Convulsões/genética , Ubiquitina-Proteína Ligases/genética
5.
Am J Hum Genet ; 104(4): 709-720, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30905399

RESUMO

The Mediator is an evolutionarily conserved, multi-subunit complex that regulates multiple steps of transcription. Mediator activity is regulated by the reversible association of a four-subunit module comprising CDK8 or CDK19 kinases, together with cyclin C, MED12 or MED12L, and MED13 or MED13L. Mutations in MED12, MED13, and MED13L were previously identified in syndromic developmental disorders with overlapping phenotypes. Here, we report CDK8 mutations (located at 13q12.13) that cause a phenotypically related disorder. Using whole-exome or whole-genome sequencing, and by international collaboration, we identified eight different heterozygous missense CDK8 substitutions, including 10 shown to have arisen de novo, in 12 unrelated subjects; a recurrent mutation, c.185C>T (p.Ser62Leu), was present in five individuals. All predicted substitutions localize to the ATP-binding pocket of the kinase domain. Affected individuals have overlapping phenotypes characterized by hypotonia, mild to moderate intellectual disability, behavioral disorders, and variable facial dysmorphism. Congenital heart disease occurred in six subjects; additional features present in multiple individuals included agenesis of the corpus callosum, ano-rectal malformations, seizures, and hearing or visual impairments. To evaluate the functional impact of the mutations, we measured phosphorylation at STAT1-Ser727, a known CDK8 substrate, in a CDK8 and CDK19 CRISPR double-knockout cell line transfected with wild-type (WT) or mutant CDK8 constructs. These experiments demonstrated a reduction in STAT1 phosphorylation by all mutants, in most cases to a similar extent as in a kinase-dead control. We conclude that missense mutations in CDK8 cause a developmental disorder that has phenotypic similarity to syndromes associated with mutations in other subunits of the Mediator kinase module, indicating probable overlap in pathogenic mechanisms.


Assuntos
Quinase 8 Dependente de Ciclina/genética , Deficiências do Desenvolvimento/genética , Complexo Mediador/genética , Mutação de Sentido Incorreto , Encéfalo/anormalidades , Criança , Pré-Escolar , Ciclina C/genética , Quinases Ciclina-Dependentes/genética , Exoma , Feminino , Cardiopatias Congênitas/genética , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Mutação , Fenótipo , Fosforilação , Síndrome
6.
Am J Hum Genet ; 104(1): 139-156, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30595372

RESUMO

Type 2A protein phosphatases (PP2As) are highly expressed in the brain and regulate neuronal signaling by catalyzing phospho-Ser/Thr dephosphorylations in diverse substrates. PP2A holoenzymes comprise catalytic C-, scaffolding A-, and regulatory B-type subunits, which determine substrate specificity and physiological function. Interestingly, de novo mutations in genes encoding A- and B-type subunits have recently been implicated in intellectual disability (ID) and developmental delay (DD). We now report 16 individuals with mild to profound ID and DD and a de novo mutation in PPP2CA, encoding the catalytic Cα subunit. Other frequently observed features were severe language delay (71%), hypotonia (69%), epilepsy (63%), and brain abnormalities such as ventriculomegaly and a small corpus callosum (67%). Behavioral problems, including autism spectrum disorders, were reported in 47% of individuals, and three individuals had a congenital heart defect. PPP2CA de novo mutations included a partial gene deletion, a frameshift, three nonsense mutations, a single amino acid duplication, a recurrent mutation, and eight non-recurrent missense mutations. Functional studies showed complete PP2A dysfunction in four individuals with seemingly milder ID, hinting at haploinsufficiency. Ten other individuals showed mutation-specific biochemical distortions, including poor expression, altered binding to the A subunit and specific B-type subunits, and impaired phosphatase activity and C-terminal methylation. Four were suspected to have a dominant-negative mechanism, which correlated with severe ID. Two missense variants affecting the same residue largely behaved as wild-type in our functional assays. Overall, we found that pathogenic PPP2CA variants impair PP2A-B56(δ) functionality, suggesting that PP2A-related neurodevelopmental disorders constitute functionally converging ID syndromes.


Assuntos
Deficiência Intelectual/genética , Mutação , Proteína Fosfatase 2/genética , Adolescente , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Células HEK293 , Haploinsuficiência/genética , Humanos , Masculino , Ligação Proteica/genética , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Síndrome
7.
Am J Med Genet A ; 188(2): 473-487, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34668327

RESUMO

Biallelic pathogenic variants in the TANGO2 (transport and Golgi organization 2 homolog) gene have been identified as causing a rare metabolic disorder characterized by susceptibility to recurrent rhabdomyolysis, lactic acidosis, encephalopathy, and life-threatening tachyarrhythmias. Recently published reports suggest variable clinical severity and phenotypes. This study details five new patients from two families with biallelic pathogenic variants in the TANGO2 gene identified by whole exome sequencing and includes the largest number of affected individuals from a single family reported to date. We document significant intrafamilial variability and highlight that milder phenotypes may be underrecognized. We present biochemical and clinical data to help highlight the features that aid in consideration of this condition in the differential with disorders of fatty acid oxidation. We also present a comprehensive literature review summarizing the molecular, clinical, and biochemical findings for 92 individuals across 13 publications. Of the 27 pathogenic variants reported to date, the recurrent exons 3-9 deletion represents the most common variant seen in 42% of individuals with TANGO2 deficiency. Common clinical features seen in >70% of all individuals include acute metabolic crisis, rhabdomyolysis, neurologic abnormalities, developmental delay, and intellectual disability. Findings such as elevated creatine kinase, hypothyroidism, ketotic hypoglycemia, QT prolongation, or abnormalities of long-chain acylcarnitines and urine dicarboxylic acids should raise clinical suspicion for this life-threatening condition.


Assuntos
Deficiência Intelectual , Rabdomiólise , Éxons , Humanos , Deficiência Intelectual/genética , Fenótipo , Rabdomiólise/diagnóstico , Rabdomiólise/genética , Sequenciamento do Exoma
8.
Neurobiol Dis ; 152: 105299, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33600953

RESUMO

Triosephosphate isomerase (TPI) deficiency (Df) is a rare recessive metabolic disorder that manifests as hemolytic anemia, locomotor impairment, and progressive neurodegeneration. Research suggests that TPI Df mutations, including the "common" TPIE105Dmutation, result in reduced TPI protein stability that appears to underlie disease pathogenesis. Drosophila with the recessive TPIsugarkill allele (a.k.a. sgk or M81T) exhibit progressive locomotor impairment, neuromuscular impairment and reduced longevity, modeling the human disorder. TPIsugarkill produces a functional protein that is degraded by the proteasome. Molecular chaperones, such as Hsp70 and Hsp90, have been shown to contribute to the regulation of TPIsugarkill degradation. In addition, stabilizing the mutant protein through chaperone modulation results in improved TPI deficiency phenotypes. To identify additional regulators of TPIsugarkill degradation, we performed a genome-wide RNAi screen that targeted known and predicted quality control proteins in the cell to identify novel factors that modulate TPIsugarkill turnover. Of the 430 proteins screened, 25 regulators of TPIsugarkill were identified. Interestingly, 10 proteins identified were novel, previously undescribed Drosophila proteins. Proteins involved in co-translational protein quality control and ribosome function were also isolated in the screen, suggesting that TPIsugarkill may undergo co-translational selection for polyubiquitination and proteasomal degradation as a nascent polypeptide. The proteins identified in this study may reveal novel pathways for the degradation of a functional, cytosolic protein by the ubiquitin proteasome system and define therapeutic pathways for TPI Df and other biomedically important diseases.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/metabolismo , Erros Inatos do Metabolismo dos Carboidratos/metabolismo , Proteínas de Drosophila/metabolismo , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/metabolismo , Animais , Modelos Animais de Doenças , Drosophila melanogaster
9.
Am J Med Genet A ; 185(6): 1848-1853, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33683010

RESUMO

We report three unrelated probands, two male and one female, diagnosed with Aicardi-Goutières syndrome (AGS) after screening positive on California newborn screening (CA NBS) for X-linked adrenoleukodystrophy (X-ALD) due to elevated C26:0 lysophosphatidylcholine (C26:0-LPC). Follow-up evaluation was notable for elevated C26:0, C26:1, and C26:0/C22:0 ratio, and normal red blood cell plasmalogens levels in all three probands. Diagnoses were confirmed by molecular sequencing prior to 12 months of age after clinical evaluation was inconsistent with X-ALD or suggestive of AGS. For at least one proband, the early diagnosis of AGS enabled candidacy for enrollment into a therapeutic clinical trial. This report demonstrates the importance of including AGS on the differential diagnosis for individuals who screen positive for X-ALD, particularly infants with abnormal neurological features, as this age of onset would be highly unusual for X-ALD. While AGS is not included on the Recommended Universal Screening Panel, affected individuals can be identified early through state NBS programs so long as providers are aware of a broader differential that includes AGS. This report is timely, as state NBS algorithms for X-ALD are actively being established, implemented, and refined.


Assuntos
Adrenoleucodistrofia/sangue , Doenças Autoimunes do Sistema Nervoso/sangue , Doenças Genéticas Ligadas ao Cromossomo X/sangue , Triagem Neonatal , Malformações do Sistema Nervoso/sangue , Adrenoleucodistrofia/complicações , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/patologia , Doenças Autoimunes do Sistema Nervoso/complicações , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/patologia , Teste em Amostras de Sangue Seco , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Lactente , Recém-Nascido , Lisofosfatidilcolinas/sangue , Masculino , Malformações do Sistema Nervoso/complicações , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Espectrometria de Massas em Tandem
11.
J Inherit Metab Dis ; 43(4): 871-879, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32049367

RESUMO

Pathogenic variants in the Golgi localised alpha 1,6 fucosyltransferase, FUT8, cause a rare inherited metabolic disorder known as FUT8-CDG. To date, only three affected individuals have been reported presenting with a constellation of symptoms including intrauterine growth restriction, severe delays in growth and development, other neurological impairments, significantly shortened limbs, respiratory complications, and shortened lifespan. Here, we report an additional four unrelated affected individuals homozygous for novel pathogenic variants in FUT8. Analysis of serum N-glycans revealed a complete lack of core fucosylation, an important diagnostic biomarker of FUT8-CDG. Our data expands both the molecular and clinical phenotypes of FUT8-CDG and highlights the importance of identifying a reliable biomarker for confirming potentially pathogenic variants.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Fucose/metabolismo , Fucosiltransferases/genética , Polissacarídeos/metabolismo , Defeitos Congênitos da Glicosilação/metabolismo , Feminino , Fucosiltransferases/deficiência , Humanos , Masculino , Espectrometria de Massas , Fenótipo , Sequenciamento do Exoma
12.
Semin Neurol ; 40(2): 219-235, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32185789

RESUMO

Metabolic disorders represent rare but often treatable causes of seizures and epilepsy of neonatal onset. As seizures are relatively common in the neonatal period, systemic clues to a specific diagnosis may be lacking or shrouded by acute illness. An important role of the consulting pediatric neurologist is to identify neonates with a possible metabolic or otherwise genetic diagnosis. In this review, the authors describe presenting signs and symptoms, a diagnostic framework, and disorder-specific treatment options for inborn errors of metabolism that may present in the neonatal period. Specific attention is given to the neurologic aspects of each condition, including the electroclinical phenotype and findings on brain imaging. As expedited diagnosis and prompt initiation of available therapies have been demonstrated to result in improved epilepsy and developmental outcomes, this work acts as a framework to guide evaluation when an inherited metabolic disorder is suspected. In addition to informing treatment, a definitive diagnosis allows for appropriate counseling regarding prognosis, any associated screening or preventive measures, and family planning.


Assuntos
Doenças do Recém-Nascido , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/diagnóstico , Convulsões/etiologia , Humanos , Recém-Nascido
13.
Am J Med Genet A ; 179(6): 966-977, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30920161

RESUMO

Phacomatosis pigmentovascularis (PPV) comprises a family of rare conditions that feature vascular abnormalities and melanocytic lesions that can be solely cutaneous or multisystem in nature. Recently published work has demonstrated that both vascular and melanocytic abnormalities in PPV of the cesioflammea and cesiomarmorata subtypes can result from identical somatic mosaic activating mutations in the genes GNAQ and GNA11. Here, we present three new cases of PPV with features of the cesioflammea and/or cesiomarmorata subtypes and mosaic mutations in GNAQ or GNA11. To better understand the risk of potentially occult complications faced by such patients we additionally reviewed 176 cases published in the literature. We report the frequency of clinical findings, their patterns of co-occurrence as well as published recommendations for surveillance after diagnosis. Features assessed include: capillary malformation; dermal and ocular melanocytosis; glaucoma; limb asymmetry; venous malformations; and central nervous system (CNS) anomalies, such as ventriculomegaly and calcifications. We found that ocular findings are common in patients with phacomatosis cesioflammea and cesiomarmorata. Facial vascular involvement correlates with a higher risk of seizures (p = .0066). Our genetic results confirm the role of mosaic somatic mutations in GNAQ and GNA11 in phacomatosis cesioflammea and cesiomarmorata. Their clinical and molecular findings place these conditions on a clinical spectrum encompassing other GNAQ and GNA11 related disorders and inform recommendations for their management.


Assuntos
Síndromes Neurocutâneas/diagnóstico , Fenótipo , Alelos , Criança , Diagnóstico Diferencial , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Genótipo , Humanos , Lactente , Angiografia por Ressonância Magnética , Imageamento por Ressonância Magnética , Masculino , Mutação , Síndromes Neurocutâneas/genética , Pele/patologia , Sequenciamento do Exoma
16.
J AAPOS ; 28(3): 103925, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697387

RESUMO

BACKGROUND: NGLY1 deficiency is a rare autosomal recessive disorder with core features of global developmental delay, liver enzyme abnormalities, movement disorder, polyneuropathy, and hypo- or alacrima. We characterized the full spectrum and evolution of the ocular phenotype in a prospective natural history of NGLY1 deficiency. METHODS: We collected ophthalmological data on 29 individuals with NGLY1 deficiency in a natural history study. Medical records were reviewed to confirm caregiver-reported symptoms. Of the 29, 15 participants appeared for at least one ophthalmological examination. RESULTS: Caregivers reported at least one ocular sign or symptom in 90% of participants (26/29), most commonly decreased tears, refractive error, and chronic infection. Daily eye medication, including artificial tears, ophthalmic ointment, and topical antibiotics were used by 62%. Ophthalmological examination confirmed refractive errors in 93% (14/15) and corneal abnormalities in 73% (11/15). CONCLUSIONS: Given nearly universal hypolacrima and additional prominent ocular findings in NGLY1 deficiency, a targeted ocular history and ophthalmologic examination may facilitate prompt diagnosis and early initiation of preventive eye care, preserving vision and overall ocular health.


Assuntos
Erros de Refração , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem , Oftalmopatias/diagnóstico , Oftalmopatias/etiologia , Estudos Longitudinais , Fenótipo , Estudos Prospectivos , Erros de Refração/diagnóstico , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo
17.
Orphanet J Rare Dis ; 18(1): 149, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308910

RESUMO

BACKGROUND: We refine the clinical spectrum of FOXG1 syndrome and expand genotype-phenotype correlations through evaluation of 122 individuals enrolled in an international patient registry. METHODS: The FOXG1 syndrome online patient registry allows for remote collection of caregiver-reported outcomes. Inclusion required documentation of a (likely) pathogenic variant in FOXG1. Caregivers were administered a questionnaire to evaluate clinical severity of core features of FOXG1 syndrome. Genotype-phenotype correlations were determined using nonparametric analyses. RESULTS: We studied 122 registry participants with FOXG1 syndrome, aged < 12 months to 24 years. Caregivers described delayed or absent developmental milestone attainment, seizures (61%), and movement disorders (58%). Participants harbouring a missense variant had a milder phenotype. Compared to individuals with gene deletions (0%) or nonsense variants (20%), missense variants were associated with more frequent attainment of sitting (73%). Further, individuals with missense variants (41%) achieved independent walking more frequently than those with gene deletions (0%) or frameshift variants (6%). Presence of epilepsy also varied by genotype and was significantly more common in those with gene deletions (81%) compared to missense variants (47%). Individuals with gene deletions were more likely to have higher seizure burden than other genotypes with 53% reporting daily seizures, even at best control. We also observed that truncations preserving the forkhead DNA binding domain were associated with better developmental outcomes. CONCLUSION: We refine the phenotypic spectrum of neurodevelopmental features associated with FOXG1 syndrome. We strengthen genotype-driven outcomes, where missense variants are associated with a milder clinical course.


Assuntos
Síndrome de Rett , Humanos , Genótipo , Convulsões , Mutação da Fase de Leitura , Sistema de Registros , Proteínas do Tecido Nervoso , Fatores de Transcrição Forkhead
18.
Nat Biotechnol ; 40(7): 1035-1041, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35347328

RESUMO

Whole-genome sequencing (WGS) can identify variants that cause genetic disease, but the time required for sequencing and analysis has been a barrier to its use in acutely ill patients. In the present study, we develop an approach for ultra-rapid nanopore WGS that combines an optimized sample preparation protocol, distributing sequencing over 48 flow cells, near real-time base calling and alignment, accelerated variant calling and fast variant filtration for efficient manual review. Application to two example clinical cases identified a candidate variant in <8 h from sample preparation to variant identification. We show that this framework provides accurate variant calls and efficient prioritization, and accelerates diagnostic clinical genome sequencing twofold compared with previous approaches.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Sequenciamento Completo do Genoma/métodos
19.
Genes (Basel) ; 12(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34946879

RESUMO

Due to newborn screening for X-linked adrenoleukodystrophy (ALD), and the use of exome sequencing in clinical practice, the detection of variants of unknown significance (VUS) in the ABCD1 gene is increasing. In these cases, functional tests in fibroblasts may help to classify a variant as (likely) benign or pathogenic. We sought to establish reference ranges for these tests in ALD patients and control subjects with the aim of helping to determine the pathogenicity of VUS in ABCD1. Fibroblasts from 36 male patients with confirmed ALD, 26 healthy control subjects and 17 individuals without a family history of ALD, all with an uncertain clinical diagnosis and a VUS identified in ABCD1, were included. We performed a combination of tests: (i) a test for very-long-chain fatty acids (VLCFA) levels, (ii) a D3-C22:0 loading test to study the VLCFA metabolism and (iii) immunoblotting for ALD protein. All ALD patient fibroblasts had elevated VLCFA levels and a reduced peroxisomal ß-oxidation capacity (as measured by the D3-C16:0/D3-C22:0 ratio in the D3-C22:0 loading test) compared to the control subjects. Of the VUS cases, the VLCFA metabolism was not significantly impaired (most test results were within the reference range) in 6/17, the VLCFA metabolism was significantly impaired (most test results were within/near the ALD range) in 9/17 and a definite conclusion could not be drawn in 2/17 of the cases. Biochemical studies in fibroblasts provided clearly defined reference and disease ranges for the VLCFA metabolism. In 15/17 (88%) VUS we were able to classify the variant as being likely benign or pathogenic. This is of great clinical importance as new variants will be detected.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Fibroblastos/metabolismo , Mutação , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/metabolismo , Adulto , Ácidos Graxos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência
20.
Mol Syndromol ; 9(6): 295-299, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30800045

RESUMO

SYNGAP1 encodes a brain-specific Ras GTPase activating protein (GAP) that regulates synaptic strength in glutamatergic neurons. Pathogenic variants in this gene are associated with a neurodevelopmental disorder characterized by intellectual and developmental disabilities, generalized epilepsy, hypotonia, and autism spectrum disorders. We describe a young male with suspected SYNGAP1-related disorder given clinical overlap and identification of an intronic variant of uncertain significance; clinical transcriptome analysis demonstrated activation of a cryptic acceptor splice site resulting in frameshift and introduction of a stop codon. This report highlights the utility of functional studies newly available to clinical practice in confirming a suspected genetic diagnosis, which can directly impact medical management and preclude the need for additional diagnostic testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA