Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.043
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(11): 1842-1859.e18, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35561686

RESUMO

The precise genetic origins of the first Neolithic farming populations in Europe and Southwest Asia, as well as the processes and the timing of their differentiation, remain largely unknown. Demogenomic modeling of high-quality ancient genomes reveals that the early farmers of Anatolia and Europe emerged from a multiphase mixing of a Southwest Asian population with a strongly bottlenecked western hunter-gatherer population after the last glacial maximum. Moreover, the ancestors of the first farmers of Europe and Anatolia went through a period of extreme genetic drift during their westward range expansion, contributing highly to their genetic distinctiveness. This modeling elucidates the demographic processes at the root of the Neolithic transition and leads to a spatial interpretation of the population history of Southwest Asia and Europe during the late Pleistocene and early Holocene.


Assuntos
Fazendeiros , Genoma , Agricultura , DNA Mitocondrial/genética , Europa (Continente) , Deriva Genética , Genômica , História Antiga , Migração Humana , Humanos
2.
Cell ; 183(4): 1043-1057.e15, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-32970989

RESUMO

We show that SARS-CoV-2 spike protein interacts with both cellular heparan sulfate and angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD). Docking studies suggest a heparin/heparan sulfate-binding site adjacent to the ACE2-binding site. Both ACE2 and heparin can bind independently to spike protein in vitro, and a ternary complex can be generated using heparin as a scaffold. Electron micrographs of spike protein suggests that heparin enhances the open conformation of the RBD that binds ACE2. On cells, spike protein binding depends on both heparan sulfate and ACE2. Unfractionated heparin, non-anticoagulant heparin, heparin lyases, and lung heparan sulfate potently block spike protein binding and/or infection by pseudotyped virus and authentic SARS-CoV-2 virus. We suggest a model in which viral attachment and infection involves heparan sulfate-dependent enhancement of binding to ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin presents new therapeutic opportunities.


Assuntos
Betacoronavirus/fisiologia , Heparitina Sulfato/metabolismo , Peptidil Dipeptidase A/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/isolamento & purificação , Sítios de Ligação , COVID-19 , Linhagem Celular , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Heparina/química , Heparina/metabolismo , Heparitina Sulfato/química , Humanos , Rim/metabolismo , Pulmão/metabolismo , Simulação de Dinâmica Molecular , Pandemias , Peptidil Dipeptidase A/química , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Internalização do Vírus
3.
Cell ; 169(1): 47-57.e11, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340349

RESUMO

Genetic conflict between viruses and their hosts drives evolution and genetic innovation. Prokaryotes evolved CRISPR-mediated adaptive immune systems for protection from viral infection, and viruses have evolved diverse anti-CRISPR (Acr) proteins that subvert these immune systems. The adaptive immune system in Pseudomonas aeruginosa (type I-F) relies on a 350 kDa CRISPR RNA (crRNA)-guided surveillance complex (Csy complex) to bind foreign DNA and recruit a trans-acting nuclease for target degradation. Here, we report the cryo-electron microscopy (cryo-EM) structure of the Csy complex bound to two different Acr proteins, AcrF1 and AcrF2, at an average resolution of 3.4 Å. The structure explains the molecular mechanism for immune system suppression, and structure-guided mutations show that the Acr proteins bind to residues essential for crRNA-mediated detection of DNA. Collectively, these data provide a snapshot of an ongoing molecular arms race between viral suppressors and the immune system they target.


Assuntos
Bacteriófagos/química , Proteínas Associadas a CRISPR/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/virologia , RNA Bacteriano/química , Proteínas Virais/química , Bacteriófagos/classificação , Bacteriófagos/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Vigilância Imunológica , Modelos Moleculares , Pseudomonas aeruginosa/genética , RNA Bacteriano/metabolismo , RNA Bacteriano/ultraestrutura , Proteínas Virais/ultraestrutura
4.
Cell ; 167(2): 341-354.e12, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27667684

RESUMO

Comparative analyses have identified genomic regions potentially involved in human evolution but do not directly assess function. Human accelerated regions (HARs) represent conserved genomic loci with elevated divergence in humans. If some HARs regulate human-specific social and behavioral traits, then mutations would likely impact cognitive and social disorders. Strikingly, rare biallelic point mutations-identified by whole-genome and targeted "HAR-ome" sequencing-showed a significant excess in individuals with ASD whose parents share common ancestry compared to familial controls, suggesting a contribution in 5% of consanguineous ASD cases. Using chromatin interaction sequencing, massively parallel reporter assays (MPRA), and transgenic mice, we identified disease-linked, biallelic HAR mutations in active enhancers for CUX1, PTBP2, GPC4, CDKL5, and other genes implicated in neural function, ASD, or both. Our data provide genetic evidence that specific HARs are essential for normal development, consistent with suggestions that their evolutionary changes may have altered social and/or cognitive behavior. PAPERCLIP.


Assuntos
Transtorno do Espectro Autista/genética , Cognição , Predisposição Genética para Doença , Neurogênese/genética , Mutação Puntual , Comportamento Social , Alelos , Animais , Córtex Cerebral/metabolismo , Dosagem de Genes , Variação Genética , Genoma Humano , Proteínas de Homeodomínio/genética , Humanos , Íntrons , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Locos de Características Quantitativas , Elementos Reguladores de Transcrição , Proteínas Repressoras/genética , Fatores de Transcrição
5.
Nature ; 613(7944): 582-587, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599980

RESUMO

Cas12a2 is a CRISPR-associated nuclease that performs RNA-guided, sequence-nonspecific degradation of single-stranded RNA, single-stranded DNA and double-stranded DNA following recognition of a complementary RNA target, culminating in abortive infection1. Here we report structures of Cas12a2 in binary, ternary and quaternary complexes to reveal a complete activation pathway. Our structures reveal that Cas12a2 is autoinhibited until binding a cognate RNA target, which exposes the RuvC active site within a large, positively charged cleft. Double-stranded DNA substrates are captured through duplex distortion and local melting, stabilized by pairs of 'aromatic clamp' residues that are crucial for double-stranded DNA degradation and in vivo immune system function. Our work provides a structural basis for this mechanism of abortive infection to achieve population-level immunity, which can be leveraged to create rational mutants that degrade a spectrum of collateral substrates.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , RNA , Proteínas Associadas a CRISPR/antagonistas & inibidores , Proteínas Associadas a CRISPR/metabolismo , DNA/química , DNA/imunologia , DNA/metabolismo , RNA/química , RNA/metabolismo , Ativação Enzimática , Domínio Catalítico , Especificidade por Substrato
6.
Nature ; 613(7944): 588-594, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599979

RESUMO

Bacterial abortive-infection systems limit the spread of foreign invaders by shutting down or killing infected cells before the invaders can replicate1,2. Several RNA-targeting CRISPR-Cas systems (that is, types III and VI) cause abortive-infection phenotypes by activating indiscriminate nucleases3-5. However, a CRISPR-mediated abortive mechanism that leverages indiscriminate DNase activity of an RNA-guided single-effector nuclease has yet to be observed. Here we report that RNA targeting by the type V single-effector nuclease Cas12a2 drives abortive infection through non-specific cleavage of double-stranded DNA (dsDNA). After recognizing an RNA target with an activating protospacer-flanking sequence, Cas12a2 efficiently degrades single-stranded RNA (ssRNA), single-stranded DNA (ssDNA) and dsDNA. Within cells, the activation of Cas12a2 induces an SOS DNA-damage response and impairs growth, preventing the dissemination of the invader. Finally, we harnessed the collateral activity of Cas12a2 for direct RNA detection, demonstrating that Cas12a2 can be repurposed as an RNA-guided RNA-targeting tool. These findings expand the known defensive abilities of CRISPR-Cas systems and create additional opportunities for CRISPR technologies.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , DNA , RNA , Proteínas Associadas a CRISPR/metabolismo , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , RNA/metabolismo , Resposta SOS em Genética , Dano ao DNA , RNA Guia de Sistemas CRISPR-Cas , Edição de Genes
7.
Nature ; 601(7893): 397-403, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912114

RESUMO

The cerebral cortex is a cellularly complex structure comprising a rich diversity of neuronal and glial cell types. Cortical neurons can be broadly categorized into two classes-excitatory neurons that use the neurotransmitter glutamate, and inhibitory interneurons that use γ-aminobutyric acid (GABA). Previous developmental studies in rodents have led to a prevailing model in which excitatory neurons are born from progenitors located in the cortex, whereas cortical interneurons are born from a separate population of progenitors located outside the developing cortex in the ganglionic eminences1-5. However, the developmental potential of human cortical progenitors has not been thoroughly explored. Here we show that, in addition to excitatory neurons and glia, human cortical progenitors are also capable of producing GABAergic neurons with the transcriptional characteristics and morphologies of cortical interneurons. By developing a cellular barcoding tool called 'single-cell-RNA-sequencing-compatible tracer for identifying clonal relationships' (STICR), we were able to carry out clonal lineage tracing of 1,912 primary human cortical progenitors from six specimens, and to capture both the transcriptional identities and the clonal relationships of their progeny. A subpopulation of cortically born GABAergic neurons was transcriptionally similar to cortical interneurons born from the caudal ganglionic eminence, and these cells were frequently related to excitatory neurons and glia. Our results show that individual human cortical progenitors can generate both excitatory neurons and cortical interneurons, providing a new framework for understanding the origins of neuronal diversity in the human cortex.


Assuntos
Linhagem da Célula , Córtex Cerebral , Interneurônios , Inibição Neural , Neurônios , Córtex Cerebral/citologia , Neurônios GABAérgicos/citologia , Humanos , Interneurônios/citologia , Neurônios/citologia
8.
Nature ; 601(7893): 404-409, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912118

RESUMO

During neurogenesis, mitotic progenitor cells lining the ventricles of the embryonic mouse brain undergo their final rounds of cell division, giving rise to a wide spectrum of postmitotic neurons and glia1,2. The link between developmental lineage and cell-type diversity remains an open question. Here we used massively parallel tagging of progenitors to track clonal relationships and transcriptomic signatures during mouse forebrain development. We quantified clonal divergence and convergence across all major cell classes postnatally, and found diverse types of GABAergic neuron that share a common lineage. Divergence of GABAergic clones occurred during embryogenesis upon cell-cycle exit, suggesting that differentiation into subtypes is initiated as a lineage-dependent process at the progenitor cell level.


Assuntos
Encéfalo , Linhagem da Célula , Neurônios GABAérgicos , Células-Tronco Neurais , Neurogênese , Animais , Encéfalo/citologia , Diferenciação Celular , Desenvolvimento Embrionário , Neurônios GABAérgicos/citologia , Camundongos , Mitose , Células-Tronco Neurais/citologia , Neurogênese/genética , Transcriptoma
9.
Nat Methods ; 21(2): 331-341, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151595

RESUMO

Multiplexed fluorescence imaging is typically limited to three- to five-plex on standard setups. Sequential imaging methods based on iterative labeling and imaging enable practical higher multiplexing, but generally require a complex fluidic setup with several rounds of slow buffer exchange (tens of minutes to an hour for each exchange step). We report the thermal-plex method, which removes complex and slow buffer exchange steps and provides fluidic-free, rapid sequential imaging. Thermal-plex uses simple DNA probes that are engineered to fluoresce sequentially when, and only when, activated with transient exposure to heating spikes at designated temperatures (thermal channels). Channel switching is fast (<30 s) and is achieved with a commercially available and affordable on-scope heating device. We demonstrate 15-plex RNA imaging (five thermal × three fluorescence channels) in fixed cells and retina tissues in less than 4 min, without using buffer exchange or fluidics. Thermal-plex introduces a new labeling method for efficient sequential multiplexed imaging.


Assuntos
DNA , Imagem Óptica , Imagem Óptica/métodos , RNA , Temperatura
10.
Annu Rev Neurosci ; 41: 185-206, 2018 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-29986162

RESUMO

Understanding the biological basis for human-specific cognitive traits presents both immense challenges and unique opportunities. Although the question of what makes us human has been investigated with several different methods, the rise of comparative genomics, epigenomics, and medical genetics has provided tools to help narrow down and functionally assess the regions of the genome that seem evolutionarily relevant along the human lineage. In this review, we focus on how medical genetic cases have provided compelling functional evidence for genes and loci that appear to have interesting evolutionary signatures in humans. Furthermore, we examine a special class of noncoding regions, human accelerated regions (HARs), that have been suggested to show human-lineage-specific divergence, and how the use of clinical and population data has started to provide functional information to examine these regions. Finally, we outline methods that provide new insights into functional noncoding sequences in evolution.


Assuntos
Comportamento/fisiologia , Evolução Biológica , Encéfalo , Genômica , Doenças do Sistema Nervoso , Animais , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/fisiopatologia
11.
Nature ; 588(7837): 272-276, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33239782

RESUMO

Mesozoic birds display considerable diversity in size, flight adaptations and feather organization1-4, but exhibit relatively conserved patterns of beak shape and development5-7. Although Neornithine (that is, crown group) birds also exhibit constraint on facial development8,9, they have comparatively diverse beak morphologies associated with a range of feeding and behavioural ecologies, in contrast to Mesozoic birds. Here we describe a crow-sized stem bird, Falcatakely forsterae gen. et sp. nov., from the Late Cretaceous epoch of Madagascar that possesses a long and deep rostrum, an expression of beak morphology that was previously unknown among Mesozoic birds and is superficially similar to that of a variety of crown-group birds (for example, toucans). The rostrum of Falcatakely is composed of an expansive edentulous maxilla and a small tooth-bearing premaxilla. Morphometric analyses of individual bony elements and three-dimensional rostrum shape reveal the development of a neornithine-like facial anatomy despite the retention of a maxilla-premaxilla organization that is similar to that of nonavialan theropods. The patterning and increased height of the rostrum in Falcatakely reveals a degree of developmental lability and increased morphological disparity that was previously unknown in early branching avialans. Expression of this phenotype (and presumed ecology) in a stem bird underscores that consolidation to the neornithine-like, premaxilla-dominated rostrum was not an evolutionary prerequisite for beak enlargement.


Assuntos
Bico/anatomia & histologia , Aves/anatomia & histologia , Fósseis , Animais , Evolução Biológica , Aves/classificação , Madagáscar , Filogenia
12.
Mol Biol Evol ; 41(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38636507

RESUMO

Inferring past demographic history of natural populations from genomic data is of central concern in many studies across research fields. Previously, our group had developed dadi, a widely used demographic history inference method based on the allele frequency spectrum (AFS) and maximum composite-likelihood optimization. However, dadi's optimization procedure can be computationally expensive. Here, we present donni (demography optimization via neural network inference), a new inference method based on dadi that is more efficient while maintaining comparable inference accuracy. For each dadi-supported demographic model, donni simulates the expected AFS for a range of model parameters then trains a set of Mean Variance Estimation neural networks using the simulated AFS. Trained networks can then be used to instantaneously infer the model parameters from future genomic data summarized by an AFS. We demonstrate that for many demographic models, donni can infer some parameters, such as population size changes, very well and other parameters, such as migration rates and times of demographic events, fairly well. Importantly, donni provides both parameter and confidence interval estimates from input AFS with accuracy comparable to parameters inferred by dadi's likelihood optimization while bypassing its long and computationally intensive evaluation process. donni's performance demonstrates that supervised machine learning algorithms may be a promising avenue for developing more sustainable and computationally efficient demographic history inference methods.


Assuntos
Frequência do Gene , Modelos Genéticos , Aprendizado de Máquina Supervisionado , Genética Populacional/métodos , Redes Neurais de Computação , Humanos
13.
Nat Chem Biol ; 19(6): 719-730, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747055

RESUMO

Ferroptosis, an iron-dependent form of cell death driven by lipid peroxidation, provides a potential treatment avenue for drug-resistant cancers and may play a role in the pathology of some degenerative diseases. Identifying the subcellular membranes essential for ferroptosis and the sequence of their peroxidation will illuminate drug discovery strategies and ferroptosis-relevant disease mechanisms. In this study, we employed fluorescence and stimulated Raman scattering imaging to examine the structure-activity-distribution relationship of ferroptosis-modulating compounds. We found that, although lipid peroxidation in various subcellular membranes can induce ferroptosis, the endoplasmic reticulum (ER) membrane is a key site of lipid peroxidation. Our results suggest an ordered progression model of membrane peroxidation during ferroptosis that accumulates initially in the ER membrane and later in the plasma membrane. Thus, the design of ER-targeted inhibitors and inducers of ferroptosis may be used to optimally control the dynamics of lipid peroxidation in cells undergoing ferroptosis.


Assuntos
Ferroptose , Peroxidação de Lipídeos/fisiologia , Morte Celular , Membrana Celular/metabolismo , Ferro/metabolismo
14.
Nucleic Acids Res ; 51(15): 8115-8132, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37395408

RESUMO

CRISPR-associated DinG protein (CasDinG) is essential to type IV-A CRISPR function. Here, we demonstrate that CasDinG from Pseudomonas aeruginosa strain 83 is an ATP-dependent 5'-3' DNA translocase that unwinds double-stranded (ds)DNA and RNA/DNA hybrids. The crystal structure of CasDinG reveals a superfamily 2 helicase core of two RecA-like domains with three accessory domains (N-terminal, arch, and vestigial FeS). To examine the in vivo function of these domains, we identified the preferred PAM sequence for the type IV-A system (5'-GNAWN-3' on the 5'-side of the target) with a plasmid library and performed plasmid clearance assays with domain deletion mutants. Plasmid clearance assays demonstrated that all three domains are essential for type IV-A immunity. Protein expression and biochemical assays suggested the vFeS domain is needed for protein stability and the arch for helicase activity. However, deletion of the N-terminal domain did not impair ATPase, ssDNA binding, or helicase activities, indicating a role distinct from canonical helicase activities that structure prediction tools suggest involves interaction with dsDNA. This work demonstrates CasDinG helicase activity is essential for type IV-A CRISPR immunity as well as the yet undetermined activity of the CasDinG N-terminal domain.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA de Cadeia Simples , DNA de Cadeia Simples/genética , DNA Helicases/metabolismo , DNA/genética , RNA Helicases/genética , RNA
15.
Proc Natl Acad Sci U S A ; 119(10): e2119891119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35235458

RESUMO

Both neuronal and genetic mechanisms regulate brain function. While there are excellent methods to study neuronal activity in vivo, there are no nondestructive methods to measure global gene expression in living brains. Here, we present a method, epigenetic MRI (eMRI), that overcomes this limitation via direct imaging of DNA methylation, a major gene-expression regulator. eMRI exploits the methionine metabolic pathways for DNA methylation to label genomic DNA through 13C-enriched diets. A 13C magnetic resonance spectroscopic imaging method then maps the spatial distribution of labeled DNA. We validated eMRI using pigs, whose brains have stronger similarity to humans in volume and anatomy than rodents, and confirmed efficient 13C-labeling of brain DNA. We also discovered strong regional differences in global DNA methylation. Just as functional MRI measurements of regional neuronal activity have had a transformational effect on neuroscience, we expect that the eMRI signal, both as a measure of regional epigenetic activity and as a possible surrogate for regional gene expression, will enable many new investigations of human brain function, behavior, and disease.


Assuntos
Encéfalo/metabolismo , Metilação de DNA , Epigênese Genética , Imageamento por Ressonância Magnética/métodos , Animais , Encéfalo/diagnóstico por imagem , Isótopos de Carbono/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Humanos , Metionina/administração & dosagem , Reprodutibilidade dos Testes , Suínos
16.
J Biol Chem ; 299(12): 105381, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866632

RESUMO

Hijacking the ubiquitin proteasome system to elicit targeted protein degradation (TPD) has emerged as a promising therapeutic strategy to target and destroy intracellular proteins at the post-translational level. Small molecule-based TPD approaches, such as proteolysis-targeting chimeras (PROTACs) and molecular glues, have shown potential, with several agents currently in clinical trials. Biological PROTACs (bioPROTACs), which are engineered fusion proteins comprised of a target-binding domain and an E3 ubiquitin ligase, have emerged as a complementary approach for TPD. Here, we describe a new method for the evolution and design of bioPROTACs. Specifically, engineered binding scaffolds based on the third fibronectin type III domain of human tenascin-C (Tn3) were installed into the E3 ligase tripartite motif containing-21 (TRIM21) to redirect its degradation specificity. This was achieved via selection of naïve yeast-displayed Tn3 libraries against two different oncogenic proteins associated with B-cell lymphomas, mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) and embryonic ectoderm development protein (EED), and replacing the native substrate-binding domain of TRIM21 with our evolved Tn3 domains. The resulting TRIM21-Tn3 fusion proteins retained the binding properties of the Tn3 as well as the E3 ligase activity of TRIM21. Moreover, we demonstrated that TRIM21-Tn3 fusion proteins efficiently degraded their respective target proteins through the ubiquitin proteasome system in cellular models. We explored the effects of binding domain avidity and E3 ligase utilization to gain insight into the requirements for effective bioPROTAC design. Overall, this study presents a versatile engineering approach that could be used to design and engineer TRIM21-based bioPROTACs against therapeutic targets.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteínas , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteólise , Ubiquitinação , Ubiquitina/metabolismo
17.
Biol Proced Online ; 26(1): 2, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38229030

RESUMO

BACKGROUND: Some of the most complex surgical interventions to treat trauma and cancer include the use of locoregional pedicled and free autologous tissue transfer flaps. While the techniques used for these reconstructive surgery procedures have improved over time, flap complications and even failure remain a significant clinical challenge. Animal models are useful in studying the pathophysiology of ischemic flaps, but when repeatability is a primary focus of a study, conventional in-vivo designs, where one randomized subset of animals serves as a treatment group while a second subset serves as a control, are at a disadvantage instigated by greater subject-to-subject variability. Our goal was to provide a step-by-step methodological protocol for creating an alternative standardized, more economical, and transferable pre-clinical animal research model of excisional full-thickness wound healing following a simulated autologous tissue transfer which includes the primary ischemia, reperfusion, and secondary ischemia events with the latter mimicking flap salvage procedure. RESULTS: Unlike in the most frequently used classical unilateral McFarlane's caudally based dorsal random pattern skin flap model, in the herein described bilateral epigastric fasciocutaneous advancement flap (BEFAF) model, one flap heals under normal and a contralateral flap-under perturbed conditions or both flaps heal under conditions that vary by one within-subjects factor. We discuss the advantages and limitations of the proposed experimental approach and, as a part of model validation, provide the examples of its use in laboratory rat (Rattus norvegicus) axial pattern flap healing studies. CONCLUSIONS: This technically challenging but feasible reconstructive surgery model eliminates inter-subject variability, while concomitantly minimizing the number of animals needed to achieve adequate statistical power. BEFAFs may be used to investigate the spatiotemporal cellular and molecular responses to complex tissue injury, interventions simulating clinically relevant flap complications (e.g., vascular thrombosis) as well as prophylactic, therapeutic or surgical treatment (e.g., flap delay) strategies in the presence or absence of confounding risk factors (e.g., substance abuse, irradiation, diabetes) or favorable wound-healing promoting activities (e.g., exercise). Detailed visual instructions in BEFAF protocol may serve as an aid for teaching medical or academic researchers basic vascular microsurgery techniques that focus on precision, tremor management and magnification.

18.
Acta Neuropathol ; 148(1): 10, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048735

RESUMO

Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the PRNP gene. Of human prion disease cases, < 1% were transmitted by misfolded PrP, ~ 15% are inherited, and ~ 85% are sporadic (sCJD). While familial cases are inherited through germline mutations in PRNP, the cause of sCJD is unknown. Somatic mutations have been hypothesized as a cause of sCJD, and recent studies have revealed that somatic mutations accumulate in neurons during aging. To investigate the hypothesis that somatic mutations in PRNP may underlie sCJD, we performed deep DNA sequencing of PRNP in 205 sCJD cases and 170 age-matched non-disease controls. We included 5 cases of Heidenhain variant sporadic CJD (H-sCJD), where visual symptomatology and neuropathology implicate localized initiation of prion formation, and examined multiple regions across the brain including in the affected occipital cortex. We employed Multiple Independent Primer PCR Sequencing (MIPP-Seq) with a median depth of > 5000× across the PRNP coding region and analyzed for variants using MosaicHunter. An allele mixing experiment showed positive detection of variants in bulk DNA at a variant allele fraction (VAF) as low as 0.2%. We observed multiple polymorphic germline variants among individuals in our cohort. However, we did not identify bona fide somatic variants in sCJD, including across multiple affected regions in H-sCJD, nor in control individuals. Beyond our stringent variant-identification pipeline, we also analyzed VAFs from raw sequencing data, and observed no evidence of prion disease enrichment for the known germline pathogenic variants P102L, D178N, and E200K. The lack of PRNP pathogenic somatic mutations in H-sCJD or the broader cohort of sCJD suggests that clonal somatic mutations may not play a major role in sporadic prion disease. With H-sCJD representing a localized presentation of neurodegeneration, this serves as a test of the potential role of clonal somatic mutations in genes known to cause familial neurodegeneration.


Assuntos
Síndrome de Creutzfeldt-Jakob , Mutação em Linhagem Germinativa , Proteínas Priônicas , Humanos , Proteínas Priônicas/genética , Masculino , Feminino , Idoso , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/patologia , Pessoa de Meia-Idade , Mutação em Linhagem Germinativa/genética , Encéfalo/patologia , Idoso de 80 Anos ou mais , Doenças Priônicas/genética , Doenças Priônicas/patologia , Mutação
19.
Haematologica ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450530

RESUMO

Comprehensive genomic sequencing is becoming a critical component in the assessment of hematologic malignancies, with broad implications for patient management. In this context, unequivocally discriminating somatic from germline events is challenging but greatly facilitated by matched analysis of tumor:normal pairs. In contrast to solid tumors, conventional sources of normal control (peripheral blood, buccal swabs, saliva) could be highly involved by the neoplastic process, rendering them unsuitable. In this work we describe our real-world experience using cell free DNA (cfDNA) isolated from nail clippings as an alternate source of normal control, through the dedicated review of 2,610 tumor:nail pairs comprehensively sequenced by MSK-IMPACT-heme. Overall, we find nail cfDNA is a robust source of germline control for paired genomic studies. In a subset of patients, nail DNA may have tumor DNA contamination, reflecting unique attributes of the hematologic disease and transplant history. Contamination is generally low level, but significantly more common among patients with myeloid neoplasms (20.5%; 304/1482) compared to lymphoid diseases (5.4%; 61/1128) and particularly enriched in myeloproliferative neoplasms with marked myelofibrosis. When identified in patients with lymphoid and plasma-cell neoplasms, mutations commonly reflected a myeloid profile and correlated with a concurrent/evolving clonal myeloid neoplasm. For nails collected after allogeneic stem-cell transplantation, donor DNA was identified in 22% (11/50). In this cohort, an association with recent history of graft-vs-host disease was identified. These findings should be considered as a potential limitation for the use of nail as normal control but could also provide important diagnostic information regarding the disease process.

20.
J Nutr ; 154(5): 1549-1560, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38467279

RESUMO

BACKGROUND: Digestibility is a primary factor in determining the quality of dietary protein. Microbial protease supplementation may be a strategy for improving protein digestion and subsequent postprandial plasma amino acid availability. OBJECTIVES: To assess the effect of co-ingesting a microbial protease mixture with pea protein on postprandial plasma amino acid concentrations. DESIGN: A mixture of 3 microbial protease preparations (P3) was tested for proteolytic efficacy in an in vitro static simulation of gastrointestinal digestion. Subsequently, in a randomized, double-blind, placebo-controlled crossover trial, 24 healthy adults (27 ± 4 y; 12 females, 12 males) ingested 25 g pea protein isolate (20 g protein, 2.2 g fat) with either P3 or maltodextrin placebo (PLA). Blood samples were collected at baseline and throughout a 0‒5 h postprandial period and both the early (0-2 h) iAUC and total (0-5 h) iAUC were examined. RESULTS: Plasma glucose concentrations decreased in both conditions (P < 0.001), with higher concentrations after P3 ingestion compared with PLA (P < 0.001). Plasma insulin concentrations increased for both conditions (P < 0.001) with no difference between conditions (P = 0.331). Plasma total amino acid (TAA) concentrations increased over time (P < 0.001) with higher concentrations observed for P3 compared with PLA (P = 0.010) during the 0‒5 h period. There was a trend for elevated essential amino acid (EAA) concentrations for P3 compared with PLA (P = 0.099) during the 0‒5 h postprandial period but not for leucine (P = 0.282) or branched-chain amino acids (BCAA, P = 0.410). The early net exposure (0‒2 h iAUC) to amino acids (leucine, BCAA, EAA, and TAA) was higher for P3 compared with PLA (all, P < 0.05). CONCLUSIONS: Microbial protease co-ingestion increases plasma TAA concentrations (0-5 h) and leucine, BCAA, EAA, and TAA availability in the early postprandial period (0‒2 h) compared with ingesting pea protein with placebo in healthy adults.


Assuntos
Aminoácidos , Estudos Cross-Over , Suplementos Nutricionais , Proteínas de Ervilha , Período Pós-Prandial , Humanos , Adulto , Masculino , Feminino , Método Duplo-Cego , Aminoácidos/sangue , Aminoácidos/metabolismo , Adulto Jovem , Insulina/sangue , Glicemia/metabolismo , Peptídeo Hidrolases/sangue , Peptídeo Hidrolases/metabolismo , Digestão/efeitos dos fármacos , Pisum sativum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA