Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 257: 109973, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868639

RESUMO

The objective of this study was to analyse the effectiveness of advanced oxidation processes (AOPs) with Solar and UV radiation (UV/H2O2, UV/K2S2O8) for the degradation of hydrochlorothiazide (HCTZ), a widely used diuretic drug, in aqueous solution focusing on the influence of four experimental parameters: initial concentration of HCTZ, solution pH, nature of the water matrix, and initial concentration of radicals. The obtained results showed that using both kinds of direct photolysis (UV and Solar), the percentage of degraded HCTZ was low, but there was a decrease in the degradation rate favored by the increase of the initial concentration of this pollutant. In addition, the degradation rates were higher at acid pHs. With regard to the nature of water, the degradation rate varied in the order: ultrapure > superficial > tap water. This is due to the presence of organic and inorganic matter (bicarbonates, nitrates, and chlorides) in surface and tap water, that react with the radicals generated, which reduces the availability of radical species, generating competitive kinetics. The presence of radical-promoter species increased the degradation rate of the pollutant, reaching a degradation of 100% of HCTZ after 20 min of treatment. The results obtained point out that the degradation rate was higher in the presence of HO radicals. This behavior was attributed to the higher oxidation power of HO versus radicals. The determination of the degradation by-products led to structures very similar to the parent compound. For example, the corresponding hydroxylated dechlorinated derivative of HCTZ was found in all the systems used. The cytotoxicity test showed that these byproducts have a lower toxicity than the original product. Finally, the economic viability study confirmed that the UV/K2S2O8 system has the lowest cost.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Diuréticos , Hidroclorotiazida , Peróxido de Hidrogênio , Cinética , Oxirredução , Fotólise , Raios Ultravioleta
2.
J Environ Manage ; 253: 109731, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31665690

RESUMO

This study proposes the use of new materials based on core-shell structure magnetic microparticles with Ag0 (Ag(0)-MPs) on their surface to remove bromides and chlorides from waters intended for human consumption. Hydrogen peroxide was used as oxidizing agent, Ag(0)-MPs is thereby oxidized to Ag (I)-MPs, which, when in contact with Cl- and Br- ions, form the corresponding silver halide (AgCl and AgBr) on the surface of Ag-MPs. The concentration of Cl- and Br- ions was followed by using ion selective electrodes (ISEs). Silver microparticles were characterized by high-resolution scanning electron microscopy and X-ray photoelectron spectroscopy, while the presence of AgCl and AgBr on Ag-MPs was determined by microanalysis. We analyzed the influence of operational variables, including: hydrogen peroxide concentration in Ag-MP system, medium pH, influence of Cl- ions on Br- ion removal, and influence of tannic acid as surrogate of organic matter in the medium. Regarding the influence of pH, Br-and Cl- removal was constant within the pH range studied (3.5-7), being more effective for Br- than for Cl- ions. Accordingly, this research states that the system Ag-MPs/H2O2 can remove up to 67.01% of Br- ions and 56.92% of Cl- ions from water (pH = 7, [Ag-MPs]0 = 100 mg L-1, [H2O2]0 = 0.2 mM); it is reusable, regenerated by radiation and can be easily removed by applying a magnetically assisted chemical separation process.


Assuntos
Iodetos , Prata , Brometos , Cloretos , Peróxido de Hidrogênio
3.
J Environ Manage ; 255: 109927, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32063308

RESUMO

This study was aimed at the degradation of sulfonamides (SNs) via oxidation with Fe(VI). The reaction kinetics, identification of degradation byproducts and their toxicity were investigated. The pH solution and Fe(VI) loading had significant effects on the degradation of the sulfonamides. The maximum degradation rate occurred at pH 3.0 with a 6:1 ratio Fe(VI): sulfonamide, obtaining 100% degradation of 15 mg L-1 SN within 5 min. Although Fe(VI) also showed an appreciable reactivity towards SNs (kapp = 9.85-19.63 × 102 M-1 s-1) at pH 7. The influence of solution pH on the values of kapp can be explained considering the specific reaction between Fe(VI) and SNs. Degradation rates are also influenced by the presence of inorganic ions in different water matrixes. For this reason, ions present in groundwater enhanced the SNs degradation through a synergistic effect among carbonates, sulfates and Fe(VI). Degradation byproducts identified, through UPLC analysis, allowed us to proposed three degradation pathways depending on pH. At acid pH there is a cleavage of C-S and S-N bonds. At neutral pH nitroso and nitro-derivates are formed. At basic pH hydroxylation is the main reaction. The cytotoxicity assay of HEK-293 and J774 cell lines exposed to Fe(VI) indicated that transformation byproducts had a lower toxicity than SNs as baseline products. Accordingly, this research suggests that Fe(VI) can act as a chemical oxidant to remove SNs antibiotics and it can be used to treat antibiotic pollution in wastewater.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Ferro , Cinética , Oxirredução , Sulfonamidas
4.
J Environ Manage ; 225: 224-231, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30092549

RESUMO

The objective of this study was to analyze the effectiveness of UVC, UVC/H2O2 and UVC/K2S2O8 on the degradation of SAs. Rate constant values increased in the order SMZ < SDZ < SML and showed the higher photodegradation of sulfonamides with a penta-heterocycle. Quantum yields were 1.72 × 10-5 mol E-1, 3.02 × 10-5 mol E-1, and 6.32 × 10-5 mol E-1 for SMZ, SDZ and SML, respectively, at 60 min of treatment. R254 values show that the dose habitually utilized for water disinfection is inadequate to remove this type of antibiotic. The initial sulfonamide concentration has a major impact on the degradation rate. The degradation rates were higher at pH 12 for SMZ and SML. SMZ and SML photodegradation kλ values are higher in tap versus distilled water. The presence of radical promoters generates a greater increase in the degradation rate, UVC/K2S2O8 cost less energy, a mechanism was proposed, and the degradation by-products are less toxic than the original product.


Assuntos
Peróxido de Hidrogênio , Sulfonamidas/química , Poluentes Químicos da Água , Cinética , Oxirredução , Fotólise , Raios Ultravioleta , Purificação da Água
5.
J Environ Manage ; 213: 549-554, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29472036

RESUMO

The objective of this study was to determine the influence of different operational variables on fluoride (F-) removal from waters using lanthanum (La)-doped silica xerogels and the mechanisms involved in this process. Accordingly, four xerogels were synthesized, one acting as blank (X-B), two doped with LaCl3 and dried at different temperatures (X-LaCl and X-LaCl-M), and a fourth doped with La2O3 (X-LaO). The results show that fluorides are only removed when La-doped xerogels are utilized. In addition, X-LaCl yielded the highest adsorption capacity, removing 28.44% of the initial fluoride concentration at a solution pH of 7. Chemical characterization of materials confirmed that fluoride removal from waters is due to the precipitation of LaF3 on the surface of La-doped xerogels. The presence of dissolved organic matter on the aqueous solution also reduce the removal capacity of La xerogels. Finally, analysis of the influence of solution pH revealed that the adsorption capacity of all xerogels was highest at a solution pH of 7.


Assuntos
Fluoretos/isolamento & purificação , Lantânio , Purificação da Água , Adsorção , Fluoretos/química , Concentração de Íons de Hidrogênio , Dióxido de Silício , Poluentes Químicos da Água
6.
J Environ Manage ; 169: 116-25, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26731310

RESUMO

This study analyzed the overall adsorption rate of metronidazole, dimetridazole, and diatrizoate on activated carbons prepared from coffee residues and almond shells. It was also elucidated whether the overall adsorption rate was controlled by reaction on the adsorbent surface or by intraparticle diffusion. Experimental data of the pollutant concentration decay curves as a function of contact time were interpreted by kinetics (first- and second-order) and diffusion models, considering external mass transfer, surface and/or pore volume diffusion, and adsorption on an active site. The experimental data were better interpreted by a first-order than second-order kinetic model, and the first-order adsorption rate constant varied linearly with respect to the surface area and total pore volume of the adsorbents. According to the diffusion model, the overall adsorption rate is governed by intraparticle diffusion, and surface diffusion is the main mechanism controlling the intraparticle diffusion, representing >90% of total intraparticle diffusion.


Assuntos
Café , Diatrizoato/química , Dimetridazol/química , Metronidazol/química , Prunus dulcis/química , Purificação da Água/métodos , Adsorção , Carvão Vegetal/química , Diatrizoato/análise , Difusão , Cinética , Metronidazol/análise
7.
Rehabilitacion (Madr) ; 57(1): 100732, 2023.
Artigo em Espanhol | MEDLINE | ID: mdl-35545482

RESUMO

INTRODUCTION: Physical activity is essential in the osteoarthritis population, however, confinement during the COVID pandemic forced lifestyle changes. An observational and descriptive study was conducted to assess physical exercise in people with degenerative osteoarticular disease (DOD) during the COVID-19 pandemic. MATERIAL AND METHODS: A telephone survey was conducted among people over 60 years of age with DOD previously treated at the Hospital Central de la Cruz Roja, assessing physical exercise during the COVID-19 pandemic confinement. The variables (time of physical exercise, causes if exercise was reduced, and pain intensity) were analysed and compared with the situation prior to home confinement. RESULTS: A total of 33 patients (8 men, 25 women) were included, with a mean age of 75.6 years. Polyarthrosis was the most frequent diagnosis. 51.5% performed the same amount of physical exercise, 21.21% performed more and 24.2% less than before. Only 6.1% performed more than 1 h a day of activity. 36.4% had more pain than previously. CONCLUSIONS: Although there is a high adherence to the exercises learned in the rehabilitation service, COVID-19 confinement has had a negative effect on the level of exercise performed by POD patients. It is advisable to encourage physical exercise during periods of lockdown.


Assuntos
COVID-19 , Osteoartrite , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Controle de Doenças Transmissíveis , Exercício Físico , Pandemias , SARS-CoV-2
8.
RSC Adv ; 10(18): 10646-10660, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35492913

RESUMO

A controlled synthesis of methotrexate (MTX) silver nanoparticles (AgNPs-MTX) using borohydride and citrate as reduction and reduction/capping agents, respectively, was performed in order to obtain AgNPs-MTX conjugates with a narrow size distribution. Their characterization showed polydispersed spherical shape nanoparticles with a mean size around 13 nm and distribution range between 7-21 nm. The presence of MTX was confirmed by FTIR and EDX analysis. Spectroscopic determinations suggest the chemisorption of MTX through a carboxylic group (-COOH) onto AgNPs via the exchange with a citrate molecule. Drug loading capacities calculated for AgNPs synthesized using different amounts of MTX were 28, 31 and 40%. In vitro drug release tests depicted similar release profiles for all conjugated amounts releasing between 77 to 85% of the initial MTX loaded into the AgNPs. With respect to free MTX, the addition of the nanocarrier delayed its release and also changed its pharmacokinetics. Free MTX is released after 3 hours following a first order kinetic model, whereas in the presence of AgNPs, a fast initial release is observed during the first 5 hours, followed by a plateau after 24 hours. In this case, AgNPs-MTX fitted a Higuchi model, where its solubilization is controlled by a diffusion process. Results obtained from flow cytometry of different cell lines treated with AgNPs-MTX demonstrated the combined anticancer effect of both reagents, decreasing the percentage of living cells in a colon cancer cell line (HTC-116) down to 40% after 48 hours of exposure. This effect was weaker but still significant for a lung cancer cell line (A-549). Finally, a zebrafish assay with AgNPs-MTX did not show any significant cytotoxic effect, confirming thereby the reduction of systemic drug toxicity achieved by coupling MTX to AgNPs. This observed toxicity reduction in the zebrafish model implies also a probable improvement of the usage of AgNPs-MTX in chemotherapy against human cancers.

9.
Water Res ; 43(6): 1621-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19147173

RESUMO

The present study investigates the efficacy of various oxidizing treatments (ClO(-), ClO(2), KMnO(4), O(3), O(3)/H(2)O(2), O(3)/activated carbon) to remove from waters sodium dodecylbenzenesulphonate (SDBS), considered as model surfactant. Results obtained show that the use of ClO(-) and ClO(2) does not cause appreciable SDBS degradation. Additionally, in the case of ClO(-), trihalomethanes are generated, increasing system toxicity. Because the reaction kinetics between SDBS and KMnO(4) is very slow, a decrease in contaminant concentration is not observed, even at very acid pH values. SDBS reactivity with ozone is very low, with a kinetic constant (k(O)(3)) of 3.68 M(-1)s(-1), but its reactivity with HO() radicals is very high (k(OH)=1.16 x 10(10)M(-1)s(-1)), therefore O(3)/H(2)O(2) and O(3)/activated carbon, which can also generate HO(), appear as promising advanced oxidation processes to remove this contaminant from waters. The method based on ozone and activated carbon was the only process studied that produced both an increase in SDBS removal rate (due to the generation of HO() radicals in the O(3)-PAC or O(3)-GAC interaction) and a considerable reduction in the concentration of dissolved organic carbon in the system due to the PAC adsorbent properties.


Assuntos
Benzenossulfonatos/isolamento & purificação , Cloro , Benzenossulfonatos/química , Benzenossulfonatos/toxicidade , Cromatografia Gasosa , Peróxido de Hidrogênio , Indicadores e Reagentes , Cinética , Oxidantes , Oxirredução , Ozônio , Percloratos , Compostos de Potássio , Permanganato de Potássio , Tensoativos
10.
Sci Total Environ ; 650(Pt 1): 1207-1215, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308808

RESUMO

In this study, a nickel organic xerogel (X-Ni) was used as semiconductor photocatalyst for the degradation of the herbicide diuron (DRN) in aqueous solution. The main objective of this work was to analyze and compare the effectiveness of solar irradiation to remove DRN from water both by direct photolysis and photocatalytic degradation. We examined the influence of the initial concentration of the herbicide, the solution pH, the presence of different ions in the medium, the chemical composition of the water, and the presence of a photocatalyst, after 240 min of irradiation. Direct photolysis achieved a low percentage of DRN degradation but was favored: i) by a reduction in the initial concentration of the herbicide (from 35.6% to 79.0% for 0.150 × 10-3 mol/L and 0.021 × 10-3 mol/L of DRN, respectively) and ii) at solution pHs at which diuron is positively charged (78.6% for pH 2 and 50.4% for pH 7), as suggested by DFT calculations carried out for DRN and its protonated form (DRN-H+). The corresponding mono-demethylated DRN derivative, 1-(3,4-dichlorophenyl)-3-methylurea (DCPU), was identified as a DRN degradation byproduct. In addition, the presence of certain anions in the medium significantly affected the overall degradation process by direct photolysis, due to the additional generation of HO radicals. We highlight that the presence of X-Ni considerably improved the photodegradation process under solar irradiation. The photocatalytic degradation rate constant was directly proportional to the xerogel concentration, because an increase in catalyst dose produced an increase in surface active sites for the photodegradation of DRN, enhancing the overall efficiency of the process. Thus, when 4167 mg/g of X-Ni was added, the DRN removal rate was 3-fold higher and both percentage of degradation and mineralization increased 88.5% with respect to the results obtained by direct photolysis.

11.
Water Res ; 42(15): 4163-71, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18762314

RESUMO

The main objective of this study was to analyze the effectiveness of technologies based on the use of ozone and activated carbon for the removal of nitroimidazoles from water, considering them as model of pharmaceutical compounds. A study was undertaken of the influence of the different operational variables on the effectiveness of each system studied (O(3), O(3)/activated carbon), and on the kinetics involved in each process. Ozone reaction kinetics showed that nitroimidazoles have a low reactivity, with K(O)(3) values <350 M(-1)s(-1) regardless of the nitroimidazole and solution pH considered. However, nitroimidazoles have a high affinity for HO radicals, with radical rate constant (k(HO)) values of around 10(10)M(-1)s(-1). Among the nitroimidazole ozonation by-products, nitrate ions and 3-acetyl-2-oxazolidinone were detected. The presence of activated carbon during nitroimidazole ozonation produces (i) an increase in the removal rate, (ii) a reduction in the toxicity of oxidation by-products, and (iii) a reduction in the concentration of dissolved organic matter. These results are explained by the generation of HO radicals at the O(3)-activated carbon interface.


Assuntos
Carbono/química , Nitroimidazóis/isolamento & purificação , Ozônio/química , Purificação da Água/métodos , Carvão Vegetal/química , Radical Hidroxila/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Nitroimidazóis/química
12.
J Colloid Interface Sci ; 317(1): 11-7, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17936293

RESUMO

The objective of the present investigation was to determine the effectiveness of activated carbon in removing sodium dodecylbenzenesulfonate (SDBS) and to analyze the chemical and textural characteristics of the activated carbons that are involved in the adsorption process. Studies were also performed on the influence of operational variables (pH, ionic strength, and presence of microorganisms) and on the kinetics and interactions involved in the adsorption of this pollutant on activated carbon. The kinetics study of SDBS adsorption revealed no problems in its diffusion on any of the activated carbons studied, and Weisz-Prater coefficient (C WP) values were considerably lower than unity for all activated carbons studied. SDBS adsorption isotherms on these activated carbons showed that: (i) adsorption capacity of activated carbons was very high (260-470 mg/g) and increased with larger surface area; and (ii) dispersive interactions between SDBS and carbon surface were largely responsible for the adsorption of this pollutant. SDBS adsorption was not significantly affected by the solution pH, indicating that electrostatic adsorbent-adsorbate interactions do not play an important role in this process. The presence of electrolytes (NaCl) in the medium favors SDBS adsorption, accelerating the process and increasing adsorption capacity. Under the working conditions used, SDBS is not degraded by bacteria; however, the presence of bacteria during the process accelerates and increases SDBS adsorption on the activated carbon. Microorganism adsorption on the activated carbon surface increases its hydrophobicity, explaining the results observed.


Assuntos
Bactérias/química , Benzenossulfonatos/química , Carbono/química , Adsorção , Aderência Bacteriana , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Concentração Osmolar , Soluções/química , Propriedades de Superfície
13.
Water Res ; 41(5): 1031-7, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16970974

RESUMO

The objective of this study was to analyze the efficiency of silver(Ag)-doped carbon aerogels for the removal of bromide (Br(-)) and iodide (I(-)) from drinking waters. Textural characterization of Ag-doped aerogels showed that an increase in the Ag dose added during the preparation process produced: (i) a reduction in the surface area (S(BET)) and (ii) an increase in mesopore (V(2)) and macropore (V(3)) volumes. Chemical characterization of the materials revealed an acidic surface (pH of point of zero charge, pH(PZC)=4.5, O(surface)=20%). The oxidation state of Ag was +1 and the surface concentration of this element ranged from 4% to 10%. The adsorption capacity (X(m)) and affinity of adsorbent (BX(m)) increased with a reduction in the radius of the halogenide. Furthermore, an increase in the adsorption capacity was observed with higher Ag concentrations on the aerogel surface. The high adsorption capacity of the aerogel may be due to the presence of Ag(I) on its surface, with the formation of the corresponding Ag halides. Our observations indicate that the halogenides adsorption on commercial activated carbon (Sorbo-Norit) is much lower than that of the Ag-doped carbon aerogels. The presence of chloride and natural organic matter (NOM) in the medium reduced the adsorption capacity of Br(-) and I(-) on Ag carbon aerogels.


Assuntos
Brometos/isolamento & purificação , Carbono/química , Iodetos/isolamento & purificação , Prata/química , Purificação da Água/métodos , Abastecimento de Água , Adsorção , Cloretos/análise , Géis , Cinética , Água/química
14.
J Colloid Interface Sci ; 306(1): 183-6, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17109877

RESUMO

The objective of this study was to analyze the efficiency of Ag-doped aerogels in the removal of bromide and iodide from water. To test the applicability of these aerogels in water treatment, adsorption of bromide and iodide was studied under dynamic conditions using waters from Lake Zurich and a mineral water. The results obtained by using these waters showed a high breakthrough volume (V(0.02)=0.4 L) of the columns, while the height of the mass transfer zone (H(MTZ)=6.8 cm) was low, regardless of the anion under study. Bromide- and iodide-saturated columns were regenerated with NH4OH. No change in the column characteristics was observed after two regeneration treatments, regardless of the type of water considered.

15.
Chemosphere ; 68(10): 1814-20, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17493660

RESUMO

The aim of the present study was to analyze and compare the efficacy of UV photodegradation with that of different advanced oxidation processes (O(3), UV/H(2)O(2), O(3)/activated carbon) in the degradation of naphthalenesulfonic acids from aqueous solution and to investigate the kinetics and the mechanism involved in these processes. Results obtained showed that photodegradation with UV radiation (254 nm) of 1-naphthalenesulfonic, 1,5-naphthalendisulfonic and 1,3,6-naphthalentrisulfonic acids is not effective. Presence of duroquinone and 4-carboxybenzophenone during UV irradiation (308-410 nm) of the naphthalenesulfonic acids increased the photodegradation rate. Addition of H(2)O(2) during irradiation of naphthalenesulfonic acids accelerated their elimination, due to the generation of ()OH radicals in the medium. Comparison between UV photodegradation 254 m and the advanced oxidation processes (O(3), O(3)/activated carbon and UV/H(2)O(2)) showed the low-efficacy of the former in the degradation of these compounds from aqueous medium. Thus, among the systems studied, those based on the use of UV/H(2)O(2) and O(3)/activated carbon were the most effective in the oxidation of these contaminants from the medium. This is because of the high-reactivity of naphthalenesulfonic acids with the *OH radicals generated by these two systems. This was confirmed by the values of the reaction rate constant of *OH radicals with these compounds k(OH), obtained by competitive kinetics (5.7 x 10(9) M(-1) s(-1), 5.2 x 10(9) M(-1) s(-1) and 3.7 x 10(9) M(-1) s(-1) for NS, NDS and NTS, respectively).


Assuntos
Carbono/química , Peróxido de Hidrogênio/química , Naftalenossulfonatos/química , Ozônio/química , Fotoquímica , Raios Ultravioleta , Oxirredução , Fotoquímica/instrumentação , Fotoquímica/métodos
16.
Sci Total Environ ; 607-608: 649-657, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-28709099

RESUMO

The objective of this study was to remove halides from waters by silver nanoparticles (AgNPs) and hydrogen peroxide (H2O2). The experimental parameters were optimized and the mechanism involved was also determined. The AgNP/H2O2 process proved efficacious for bromide and chloride removal from water through the selective precipitation of AgCl and AgBr on the AgNP surface. The optimal AgNP and H2O2 concentrations to be added to the solution were determined for the halide concentrations under study. The removal of Cl- and Br- anions was more effective at basic pH, reaching values of up to 100% for both ions. The formation of OH, O2-, radicals was detected during the oxidation of Ag(0) into Ag(I), determining the reaction mechanism as a function of solution pH. Moreover, the results obtained show that: i) the efficacy of the oxidation of Ag(0) into Ag(I) is higher at pH11, ii) AgNPs can be generated by the O2- radical formation, and iii) the presence of NaCl and dissolved organic matter (tannic acid [TAN]) on the solution matrix reduces the efficacy of bromide removal from the medium due to: i) precipitation of AgCl on the AgNP surface, and ii) the radical scavenger capacity of TAN. AgNPs exhausted can be regenerated by using UV or solar light, and toxicity test results show that AgNPs inhibit luminescence of Vibrio fischeri bacteria.

17.
Water Res ; 40(18): 3375-84, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16970972

RESUMO

The efficiency of Co(II)-, Mn(II)-, and Ti(IV)-doped carbon aerogels for the transformation of ozone into (*)OH radicals was investigated. The carbon aerogels had a markedly acid surface character (pH(PZC approximately equal) congruent with 3-4) with very high surface oxygen concentrations (O approximately equal with 20%). X-ray photoelectron spectroscopy (XPS) analyses of the samples showed the oxidation state of the metals was +2 for Co and Mn and +4 for Ti. The presence of Mn(II)-doped carbon aerogel enhanced ozone transformation into (*)OH radicals, whereas the presence of Co(II) and Ti(IV) carbon aerogels presented no activity in this process. Moreover, it was observed that an increase in the concentration of Mn in the surface of the aerogel increases its efficiency to transform ozone into (*)OH radicals, with an Rct value ([OH]/[O(3)]) of 5.36 x 10(-8) for the aerogel doped with 16% of surface Mn(II) compared to an R(ct) of 2.68 x 10(-9) for conventional ozonation. Regardless of the aerogel used, XPS analysis of the ozonated aerogel samples showed an increase in the concentration of surface oxygen when the exposure to ozone was longer. However, presence of oxidized metal species after ozone treatment was only detected in the case of the Mn-doped aerogel, (Mn(III) and Mn(IV)). CO(2) activation of carbon aerogel produced a marked increase in its efficiency to transform ozone into (*)OH radicals compared with non-activated sample. The efficiency of Mn activated carbon aerogel to transform ozone into (*)OH radicals was greater than that of Witco commercial activated carbon or H(2)O(2) in the ozonation of water from Lake Zurich (Zurich, Switzerland).


Assuntos
Carbono/química , Radical Hidroxila/química , Metais Pesados/química , Ozônio/química , Purificação da Água , Catálise , Géis , Oxirredução , Purificação da Água/métodos
18.
Water Res ; 40(8): 1717-25, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16597457

RESUMO

A study was conducted on the efficacy of the system based on the simultaneous use of ozone and powdered activated carbon (PAC) in removing sodium dodecylbenzenesulphonate (SDBS) from drinking waters and on the influence of operational parameters (PAC dose, ozone dose and presence of radical scavengers [HCO3-]) on this process. Results obtained showed that low doses of PAC during SDBS ozonation markedly increased the rate of SDBS removal from the medium. These results are due to the combined effect of two processes: (i) SDBS adsorption on the activated carbon surface and (ii) transformation of the dissolved ozone into .OH radicals. At higher ozone and PAC doses, there was a higher rate of SDBS removal from the medium. The presence of HCO3- in the medium reduced the SDBS removal rate of the O3/PAC system. This finding confirms that the presence of PAC during SDBS ozonation favours ozone transformation into .OH radicals. Comparison of the O3/PAC system with systems based on the use of O3 or O3/H2O2 showed that the efficacy of the O3/PAC system to remove SDBS is much greater than that of the traditional oxidation methods. Thus, in the first 5 min of treatment (usual hydraulic retention time), the percentage of SDBS removed was 18% and 30% for the O3 and O3/H2O2 systems, respectively, compared with 70% for the O3/PAC system. SDBS ozonation in surface waters intended for human consumption demonstrated that the O3/PAC approach is the most efficacious of the studied systems, considerably increasing the SDBS removal rate and also reducing the concentration of dissolved organic carbon. Therefore, the results of this study show that the system based on O3/PAC is a highly attractive option for the treatment of drinking water.


Assuntos
Benzenossulfonatos/química , Carbono/química , Ozônio/química , Tensoativos/isolamento & purificação , Água/química , Adsorção , Tamanho da Partícula , Abastecimento de Água
19.
J Colloid Interface Sci ; 300(1): 437-41, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16696995

RESUMO

The aim of this study is to analyze the use of Ag-doped activated carbon aerogels for bromide and iodide removal from drinking water and to study how the activation of Ag-doped aerogels affects their behavior. It has been observed that the carbonization treatment and activation process of Ag-doped aerogels increased the surface area value ( [Formula: see text] ), whereas the volume of meso-(V(2)) and macropores (V(3)) decreased slightly. Chemical characterization of the materials revealed that carbonization and especially activation process considerably increased the surface basicity of the sample. Original sample (A) presented acidic surface properties (pH(PZC)=4.5) with 21% surface oxygen, whereas the sample that underwent activation showed mainly basic surface chemical properties (pH(PZC)=9.5) with only 6% of surface oxygen. Carbonization and especially, activation process considerable increased the adsorption capacity of bromide and iodide ions. This would mainly be produced by (i) an increase in the microporosity of the sample, which increases Ag-adsorption sites available to halide anions, and (ii) a rise of the basicity of the sample, which produces an increase in attractive electrostatic interactions between the aerogel surface, positively charged at the working pH (pH(solution)

Assuntos
Brometos/isolamento & purificação , Iodetos/isolamento & purificação , Poluentes da Água/isolamento & purificação , Purificação da Água/métodos , Ânions , Carbono , Géis , Prata
20.
Water Res ; 39(14): 3189-98, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16005933

RESUMO

Based on previous findings (Jans, U., Hoigné, J., 1998. Ozone Sci. Eng. 20, 67-87), the activity of activated carbon for the transformation of ozone into *OH radicals including the influence of operational parameters (carbon dose, ozone dose, carbon-type and carbon treatment time) was quantified. The ozone decomposition constant (k(D)) was increased by the presence of activated carbon in the system and depending on the type of activated carbon added, the ratio of the concentrations of *OH radicals and ozone, the R(ct) value ([*OH]/[O3]), was increased by a factor 3-5. The results obtained show that the surface chemical and textural characteristics of the activated carbon determines its activity for the transformation of ozone into *OH radicals. The most efficient carbons in this process are those with high basicity and large surface area. The obtained results show that the interaction between ozone and pyrrol groups present on the surface of activated carbon increase the concentration of O2*- radicals in the system, enhancing ozone transformation into *OH radicals. The activity of activated carbon decreases for extended ozone exposures. This may indicate that activated carbon does not really act as a catalyst but rather as a conventional initiator or promoter for the ozone transformation into *OH radicals. Ozonation of Lake Zurich water ([O3] = 1 mg/L) in presence of activated carbon (0.5 g/L) lead to an increase in the k(D) and R(ct) value by a factor of 10 and 39, respectively, thereby favouring the removal of ozone-resistant contaminants. Moreover, the presence of activated carbon during ozonation of Lake Zurich water led to a 40% reduction in the content of dissolved organic carbon during the first 60 min of treatment. The adsorption of low concentrations of dissolved organic matter (DOM) on activated carbon surfaces did not modify its capacity to initiate/promote ozone transformation into *OH radicals.


Assuntos
Carvão Vegetal/química , Desinfetantes/metabolismo , Radical Hidroxila/química , Ozônio/química , Purificação da Água/métodos , Clorobenzoatos/química , Compostos Orgânicos/isolamento & purificação , Compostos Orgânicos/metabolismo , Oxirredução , Oxigênio/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA