Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 50(43): 9368-76, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21942676

RESUMO

The steroid binding mechanism of a DNA aptamer was studied using isothermal titration calorimetry (ITC), NMR spectroscopy, quasi-elastic light scattering (QELS), and small-angle X-ray spectroscopy (SAXS). Binding affinity determination of a series of steroid-binding aptamers derived from a parent cocaine-binding aptamer demonstrates that substituting a GA base pair with a GC base pair governs the switch in binding specificity from cocaine to the steroid deoxycholic acid (DCA). Binding of DCA to all aptamers is an enthalpically driven process with an unfavorable binding entropy. We engineered into the steroid-binding aptamer a ligand-induced folding mechanism by shortening the terminal stem by two base pairs. NMR methods were used to demonstrate that there is a transition from a state where base pairs are formed in one stem of the free aptamer, to where three stems are formed in the DCA-bound aptamer. The ability to generate a ligand-induced folding mechanism into a DNA aptamer architecture based on the three-way junction of the cocaine-binding aptamer opens the door to obtaining a series of aptamers all with ligand-induced folding mechanisms but triggered by different ligands. Hydrodynamic data from diffusion NMR spectroscopy, QELS, and SAXS show that for the aptamer with the full-length terminal stem there is a small amount of structure compaction with DCA binding. For ligand binding by the short terminal stem aptamer, we propose a binding mechanism where secondary structure forms upon DCA binding starting from a free structure where the aptamer exists in a compact form.


Assuntos
Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Esteroides/metabolismo , Sequência de Bases , Sítios de Ligação , Calorimetria , Hidrodinâmica , Ligantes , Espectroscopia de Ressonância Magnética , Conformação de Ácido Nucleico , Espalhamento a Baixo Ângulo , Difração de Raios X
2.
Biophys Chem ; 153(1): 9-16, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21035241

RESUMO

Isothermal titration calorimetry (ITC) was used to measure the binding affinity and thermodynamics of a cocaine-binding aptamer as a function of pH and NaCl concentration. Tightest binding was achieved at a pH value of 7.4 and under conditions of no added NaCl. These data indicate that ionic interactions occur in the ligand binding mechanism. ITC was also used to measure the binding thermodynamics of a variety of sequence variants of the cocaine-binding aptamer that analyzed which regions and nucleotides of the aptamer are important for maintaining high-affinity binding. Individually, each of the three stems can be shortened, resulting in a reduced binding affinity. If all three stems are shortened, no binding occurs. If all three of the stems in the aptamer are lengthened by five base pairs ligand affinity increases. Changes in nucleotide identity at the three-way junction all decrease the affinity of the aptamer to cocaine. The greatest decrease in affinity results from changes that disrupt the GA base pairs and the identity of T19.


Assuntos
Aptâmeros de Nucleotídeos/química , Cocaína/química , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Concentração de Íons de Hidrogênio , Mutação , Conformação de Ácido Nucleico , Concentração Osmolar , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA