Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38877639

RESUMO

AIM: Coaggregation, a highly specific cell-cell interaction mechanism, plays a pivotal role in multispecies biofilm formation. While it has been mostly studied in oral environments, its occurrence in aquatic systems is also acknowledged. Considering biofilm formation's economic and health-related implications in engineered water systems, it is crucial to understand its mechanisms. Here, we hypothesized that traceable differences at the proteome level might determine coaggregation ability. METHODS AND RESULTS: Two strains of Delftia acidovorans, isolated from drinking water were studied. First, in vitro motility assays indicated more swarming and twitching motility for the coaggregating strain (C+) than non-coaggregating strain (C-). By transmission electronic microscopy, we confirmed the presence of flagella for both strains. By proteomics, we detected a significantly higher expression of type IV pilus twitching motility proteins in C+, in line with the motility assays. Moreover, flagellum ring proteins were more abundant in C+, while those involved in the formation of the flagellar hook (FlE and FilG) were only detected in C-. All the results combined suggested structural and conformational differences between stains in their cell appendages. CONCLUSION: This study presents an alternative approach for identifying protein biomarkers to detect coaggregation abilities in uncharacterized strains.


Assuntos
Biofilmes , Água Potável , Flagelos , Proteômica , Biofilmes/crescimento & desenvolvimento , Água Potável/microbiologia , Flagelos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Aderência Bacteriana , Fímbrias Bacterianas/metabolismo , Microbiologia da Água , Proteoma
2.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37827567

RESUMO

AIMS: The use of phytochemicals to improve the effectiveness of antibiotics is a promising strategy for the development of novel antimicrobials. In this study, the antibiofilm activity of perillyl alcohol and hydrocinnamic acid, both phytochemicals present in several plants, and two antibiotics from different classes (amoxicillin and chloramphenicol) was tested, alone and in combination, against Escherichia coli. METHODS AND RESULTS: Each molecule was tested at the minimum inhibitory concentration (MIC), 5 × MIC, and 10 × MIC, and characterized concerning biomass removal, metabolic inactivation, and cellular culturability. The highest percentages of metabolic inactivation (88.5% for 10 × MIC) and biomass reduction (61.7% for 10 × MIC) were obtained with amoxicillin. Interestingly, for 5 × MIC and 10 × MIC, phytochemicals provided a total reduction of colony-forming units (CFUs). Dual and triple combinations of phytochemicals and antibiotics (at MIC and 5 × MIC) demonstrated high efficacy in metabolic inactivation, moderate efficacy in terms of biomass reduction, and total reduction of cellular culturability for 5 × MIC. CONCLUSIONS: The results demonstrated the antibiofilm potential of phytochemicals, highlighting the advantage of phytochemical/antibiotic combinations for biofilm control.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/química , Biofilmes , Amoxicilina/farmacologia , Compostos Fitoquímicos/farmacologia , Testes de Sensibilidade Microbiana
3.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361044

RESUMO

Diabetic foot ulcers (DFUs) are a serious complication from diabetes mellitus, with a huge economic, social and psychological impact on the patients' life. One of the main reasons why DFUs are so difficult to heal is related to the presence of biofilms. Biofilms promote wound inflammation and a remarkable lack of response to host defences/treatment options, which can lead to disease progression and chronicity. In fact, appropriate treatment for the elimination of these microbial communities can prevent the disease evolution and, in some cases, even avoid more serious outcomes, such as amputation or death. However, the detection of biofilm-associated DFUs is difficult due to the lack of methods for diagnostics in clinical settings. In this review, the current knowledge on the involvement of biofilms in DFUs is discussed, as well as how the surrounding environment influences biofilm formation and regulation, along with its clinical implications. A special focus is also given to biofilm-associated DFU diagnosis and therapeutic strategies. An overview on promising alternative therapeutics is provided and an algorithm considering biofilm detection and treatment is proposed.


Assuntos
Pé Diabético/microbiologia , Biofilmes , Efeitos Psicossociais da Doença , Pé Diabético/epidemiologia , Pé Diabético/terapia , Farmacorresistência Bacteriana , Humanos
4.
Microb Pathog ; 128: 230-235, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30615997

RESUMO

Wild animals may be considered important reservoirs for bacterial pathogens and, consequently, possible sources of infection for humans. In this study, selected multidrug-resistant bacteria (Acinetobacter spp., Aeromonas salmonicida, Klebsiella pneumoniae, Pseudomonas fluorescens and Shewanella putrefaciens) isolated from wild animals were characterized on their ability to attach and invade/internalize human colonic carcinoma (Caco-2) cells. In addition, the viability of these bacteria to survive under simulated human gastrointestinal tract conditions as well as the production of virulence factors (homoserine lactones signal molecules, gelatinases, proteases, siderophores and biofilm formation) were studied. The results suggests that all the bacteria presented the capacity to attach and internalize into Caco-2 cells. A. salmonicida and P. fluorescens exhibited the highest ability to internalize. These bacteria were also found to be the highest proteases producers. A. salmonicida and K. pneumoniae survived under simulated human gastrointestinal conditions. These were the bacteria with the highest capacity to produce biofilms. K. pneumoniae was the only bacterium producing siderophores. Taken together, the present results reinforce the need for the "One Health" initiative, underscoring the environment and the animals as important reservoirs of infectious determinants.


Assuntos
Adesinas Bacterianas , Animais Selvagens/microbiologia , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Células CACO-2/microbiologia , Farmacorresistência Bacteriana Múltipla/fisiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Acinetobacter/isolamento & purificação , Acinetobacter/patogenicidade , Aeromonas salmonicida/isolamento & purificação , Aeromonas salmonicida/patogenicidade , Animais , Bactérias/genética , Biofilmes/crescimento & desenvolvimento , DNA Girase/genética , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Gelatinases/metabolismo , Humanos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/patogenicidade , Peptídeo Hidrolases/metabolismo , Pseudomonas fluorescens/isolamento & purificação , Pseudomonas fluorescens/patogenicidade , RNA Ribossômico 16S/genética , Shewanella putrefaciens/isolamento & purificação , Shewanella putrefaciens/patogenicidade , Sideróforos/metabolismo , Virulência , Fatores de Virulência/metabolismo
5.
Biofouling ; 32(9): 1103-14, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27643487

RESUMO

Combinations of selected phytochemicals (reserpine, pyrrolidine, quinine, morin and quercetin) with antibiotics (ciprofloxacin, tetracycline and erythromycin) were tested on the prevention and control of Staphylococcus aureus biofilms. The phytochemicals were also studied for their ability to avoid antibiotic adaptation and to inhibit antibiotic efflux pumps. Morin, pyrrolidine and quercetin at subinhibitory concentrations had significant effects in biofilm prevention and/or control when applied alone and combined with antibiotics. Synergism between antibiotics and phytochemicals was found especially against biofilms of NorA overexpressing strain S. aureus SA1199B. This strain when growing with subinhibitory concentrations of ciprofloxacin developed increased tolerance to this antibiotic. However, this was successfully reversed by quinine and morin. In addition, reserpine and quercetin showed significant efflux pump inhibition. The overall results demonstrate the role of phytochemicals in co-therapies to promote more efficient treatments and decrease antimicrobial resistance to antibiotics, with substantial effects against S. aureus in both planktonic and biofilm states.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/administração & dosagem , Ciprofloxacina/administração & dosagem , Ciprofloxacina/farmacologia , Sinergismo Farmacológico , Eritromicina/administração & dosagem , Eritromicina/farmacologia , Flavonoides/administração & dosagem , Flavonoides/farmacologia , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/administração & dosagem , Quercetina/efeitos adversos , Quercetina/farmacologia , Quinina/administração & dosagem , Quinina/farmacologia , Staphylococcus aureus/fisiologia , Tetraciclina/administração & dosagem , Tetraciclina/farmacologia
6.
Molecules ; 21(7)2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27399652

RESUMO

The majority of current infectious diseases are almost untreatable by conventional antibiotic therapy given the advent of multidrug-resistant bacteria. The degree of severity and the persistence of infections are worsened when microorganisms form biofilms. Therefore, efforts are being applied to develop new drugs not as vulnerable as the current ones to bacterial resistance mechanisms, and also able to target bacteria in biofilms. Natural products, especially those obtained from plants, have proven to be outstanding compounds with unique properties, making them perfect candidates for these much-needed therapeutics. This review presents the current knowledge on the potentialities of plant products as antibiotic adjuvants to restore the therapeutic activity of drugs. Further, the difficulties associated with the use of the existing antibiotics in the treatment of biofilm-related infections are described. To counteract the biofilm resistance problems, innovative strategies are suggested based on literature data. Among the proposed strategies, the use of phytochemicals to inhibit or eradicate biofilms is highlighted. An overview on the use of phytochemicals to interfere with bacterial quorum sensing (QS) signaling pathways and underlying phenotypes is provided. The use of phytochemicals as chelating agents and efflux pump inhibitors is also reviewed.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Animais , Antibacterianos/uso terapêutico , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Quelantes/química , Quelantes/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Percepção de Quorum/efeitos dos fármacos
7.
Int J Mol Sci ; 15(11): 19552-61, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25353177

RESUMO

Purified isothiocyanates from cruciferous plants (Brassicacea, Syn. Cruciferae) plants were evaluated against 15 isolates of methicillin-resistant S. aureus isolated from diabetic foot-ulcer patients aiming the study of the potential usage of allyl-isothiocyanate, benzyl-isothiocyanate and 2-phenylethyl-isothiocyanate against this important bacteria. Disc diffusion and minimum inhibitory concentration methods were used to access the antimicrobial activity. The index (Ia) and rate (Ra) of the antibacterial activity for each compound were calculated. The results showed a highly dose-dependent compound and chemical structure antibacterial effectiveness. The results showed a strong relation between the chemical structure of isothiocyanates and its antibacterial effectiveness. The benzyl-isothiocyanate was the most effective with a minimum inhibitory concentration varying between 2.9 and 110 µg·mL(-1) with an antibacterial activity rate up to 87%. Moreover, their antibacterial activity was mainly bactericidal. This study provides scientific evidence that isothiocyanates have an interesting biological value and must be considered as an important tool to be used against MRSA.


Assuntos
Anti-Infecciosos/farmacologia , Brassicaceae/química , Isotiocianatos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Humanos , Isotiocianatos/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química
8.
Antibiotics (Basel) ; 13(9)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39335077

RESUMO

Objectives: Campylobacter spp. remain a leading cause of bacterial gastroenteritis worldwide, with resistance to antibiotics posing significant challenges to treatment and public health. This study examines profiles in antimicrobial resistance (AMR) for Campylobacter isolates from human and animal sources over the past decade. Methods: We conducted a comprehensive review of resistance data from studies spanning ten years, analyzing profiles in resistance to key antibiotics, ciprofloxacin (CIP), tetracycline (TET), erythromycin (ERY), chloramphenicol (CHL), and gentamicin (GEN). Data were collated from various regions to assess global and regional patterns of resistance. Results: The analysis reveals a concerning trend of increasing resistance patterns, particularly to CIP and TET, across multiple regions. While resistance to CHL and GEN remains relatively low, the high prevalence of CIP resistance has significantly compromised treatment options for campylobacteriosis. Discrepancies in resistance patterns were observed between human and animal isolates, with variations across different continents and countries. Notably, resistance to ERY and CHL showed regional variability, reflecting potential differences in antimicrobial usage and management practices. Conclusions: The findings underscore the ongoing challenge of AMR in Campylobacter, highlighting the need for continued surveillance and research. The rising resistance prevalence, coupled with discrepancies in resistance patterns between human and animal isolates, emphasize the importance of a One Health approach to address AMR. Enhanced monitoring, novel treatment strategies, and global cooperation are crucial for mitigating the impact of resistance and ensuring the effective management of Campylobacter-related infections.

9.
Clin Ther ; 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39384436

RESUMO

PURPOSE: Carbapenem-resistant Acinetobacter baumannii (CRAB) is an important nosocomial pathogen. The capsular type (K-type) is considered a major virulence factor, contributing to the evasion of host defenses. The global spread and dissemination dynamics between K-types, sequence types (ST), antibiotic resistance genes, and virulence factors remain largely unknown in Portugal. METHODS: A collection of 96 CRAB clinical samples collected between 2005 and 2019 in the northern region of Portugal were tested for antimicrobial susceptibility profile and screened by polymerase chain reaction for resistance genetic determinants. A subset of 26 representative isolates was subjected to whole-genome sequencing to assess K types, ST types, and genomic relatedness. The pathogenicity of distinct K-types was also tested using Galleria mellonella model. FINDINGS: For the 96 CRAB isolates analyzed, high antimicrobial resistance (>90%) was observed to the carbapenems, fluoroquinolones, and miscellaneous agents. Greater antimicrobial susceptibility (∼30%-57%) was observed for aminoglycosides, particularly tobramycin, and amikacin. Genotypically, 75 strains (78.5%) carried blaOXA-23-like, 18 strains (18.8%) carried blaIMP-like, and 11 strains (14.9%) carried blaOXA-40-like carbapenem resistance genes, respectively. Associations between OXA and ST/capsular locus (KL) types were observed over the years (eg, OXA-40-like/ST46Past/KL120 and OXA-23-like/ST2Past/KL2). ST2Past of clonal complex II was present in most strains, a dominant drug-resistant lineage in the United States and Europe. KL7 was also the most prevalent KL-type (38.5%), followed by KL2 (34.6%), KL120 (23.1%), and KL9 (3.8%). Virulence assessment for different K-types in a Galleria mellonella model revealed a significantly increased virulence for KL120 when compared with KL7, KL9, and KL2. IMPLICATIONS: There are specific CRAB serotypes circulating in Portugal, accounting by the low diversity of acquired carbapenemase genes (OXA-23-like and OXA-40-like), ST types (ST2 and ST46) and KL types (KL2, KL7, KL9, and KL120) identified. The high prevalent of ST2, especially when associated with KL2 and blaOXA-23-like, suggest that antibiotic resistance has been driven by clonal expansion of clonal complex II. Such findings provide useful information on the diversity of multidrug-resistant bacterium that might be relevant for antibacterial interventions.

10.
J Photochem Photobiol B ; 258: 112978, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002192

RESUMO

Staphylococcus aureus is characterized by its high resistance to conventional antibiotics, particularly methicillin-resistant (MRSA) strains, making it a predominant pathogen in acute and chronic wound infections. The persistence of acute S. aureus wound infections poses a threat by increasing the incidence of their chronicity. This study investigated the potential of photodynamic activation using phytochemical-antibiotic combinations to eliminate S. aureus under conditions representative of acute wound infections, aiming to mitigate the risk of chronicity. The strategy applied takes advantage of the promising antibacterial and photosensitising properties of phytochemicals, and their ability to act as antibiotic adjuvants. The antibacterial activity of selected phytochemicals (berberine, curcumin, farnesol, gallic acid, and quercetin; 6.25-1000 µg/mL) and antibiotics (ciprofloxacin, tetracycline, fusidic acid, oxacillin, gentamicin, mupirocin, methicillin, and tobramycin; 0.0625-1024 µg/mL) was screened individually and in combination against two S. aureus clinical strains (methicillin-resistant and -susceptible-MRSA and MSSA). The photodynamic activity of the phytochemicals was assessed using a light-emitting diode (LED) system with blue (420 nm) or UV-A (365 nm) variants, at 30 mW/cm2 (light doses of 9, 18, 27 J/cm2) and 5.5 mW/cm2 (light doses of 1.5, 3.3 and 5.0 J/cm2), respectively. Notably, all phytochemicals restored antibiotic activity, with 9 and 13 combinations exhibiting potentiating effects on MSSA and MRSA, respectively. Photodynamic activation with blue light (420 nm) resulted in an 8- to 80-fold reduction in the bactericidal concentration of berberine against MSSA and MRSA, while curcumin caused 80-fold reduction for both strains at the light dose of 18 J/cm2. Berberine and curcumin-antibiotic combinations when subjected to photodynamic activation (420 nm light, 10 min, 18 J/cm2) reduced S. aureus culturability by ≈9 log CFU/mL. These combinations lowered the bactericidal concentration of antibiotics, achieving a 2048-fold reduction for gentamicin and 512-fold reduction for tobramycin. Overall, the dual approach involving antimicrobial photodynamic inactivation and selected phytochemical-antibiotic combinations demonstrated a synergistic effect, drastically reducing the culturability of S. aureus and restoring the activity of gentamicin and tobramycin.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Fármacos Fotossensibilizantes , Compostos Fitoquímicos , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Curcumina/farmacologia , Curcumina/química , Ácido Gálico/química , Ácido Gálico/farmacologia , Berberina/farmacologia , Berberina/química , Luz , Fotoquimioterapia , Infecções Estafilocócicas/tratamento farmacológico , Quercetina/farmacologia , Quercetina/química , Humanos
11.
Vet Sci ; 11(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38250918

RESUMO

Considering the increasing antibiotics resistance, there has been a propensity to replace them with antiseptics when it comes to wound management and treatment. Nevertheless, in recent years, there have been reports regarding resistance to antiseptics by some bacterial strains. There is also concern about the environmental impact of these substances. The aim of this study was to compare the antimicrobial efficacy of antiseptics and eucalyptus essential oils on bacterial strains from horse's wounds. We used twelve Escherichia coli, eight Staphylococcus aureus, two Staphylococcus pseudintermedius, one Staphylococcus vitulinus and one Staphylococcus saprophyticus strains from equine wounds. The effect of Eucalyptus radiata essential oil, Eucalyptus globulus essential oil, povidone-iodine and chlorhexidine gluconate against the isolated strains was evaluated applying the Kirby-Baüer method. Regarding the Escherichia coli strains, E. radiata and the mixture of E. radiata and E. globulus had a better inhibitory effect than antiseptics. E. globulus had a better effect against most Staphylococcus spp. compared to E. radiata. For both Gram-negative and Gram-positive strains tested, chlorhexidine gluconate had a better inhibitory effect than povidone-iodine. The antibacterial efficacy of essential oils highlights their potential to substitute or complement the use of antiseptics and so reduce resistance to antiseptics.

12.
Life (Basel) ; 13(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511802

RESUMO

Antimicrobial resistance continues to increase globally and treatment of difficult-to-treat (DTT) infections, mostly associated with carbapenem-resistant (CR) Pseudomonas aeruginosa, CR Acinetobacter baumannii, and CR- and third-generation-cephalosporins-resistant Enterobacterales remains a challenge for the clinician. The recent approval of cefiderocol has broaden the armamentarium for the treatment of patients with DTT infections. Cefiderocol is a siderophore cephalosporin that has shown excellent antibacterial activity, in part due to its innovative way of cell permeation. It is relatively stable compared to most commonly found carbapenamases. However, some resistant mechanisms to cefiderocol have already been identified and reduced susceptibility has developed during patient treatment, highlighting that the clinical use of cefiderocol must be rational. In this review, we summarize the current available treatments against the former resistant bacteria, and we revise and discuss the mechanism of action of cefiderocol, underlying the biological function of siderophores, the therapeutic potential of cefiderocol, and the mechanisms of resistance reported so far.

13.
Antibiotics (Basel) ; 12(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37107153

RESUMO

Horses are considered as reservoirs of multidrug resistant bacteria that can be spread through the environment and possibly to humans. The aim of this study was to characterize the oral Gram-negative microbiota of healthy horses and evaluate their antimicrobial susceptibility profile in a One Health approach. For this purpose, samples were collected from the gingival margin of healthy horses, free of antimicrobial therapy, cultured in selective mediums, identified, and tested for antimicrobial susceptibility. Fifty-five Gram-negative isolates were identified, with 89.5% being zoonotic and 62% affecting humans, which were also found commonly in the environment. Forty-eight isolates (96%) were MDR. The phenotypic resistance presented as higher to macrolides (81.8%), ß-lactams (55.4%), and quinolones (50%), and lower to sulfonamides (27.3%), tetracyclines, and amphenicols (both with 30.9%). In total, 51.5% of the isolates presented resistance to carbapenems. In addition to being the first report on the commensal oral microbiota of horses and respective susceptibility profile, this study highlights the horse as a valuable sentinel that can control the evolution and transmission of multidrug-resistant bacteria between the "One Health triad" since it is in contact with humans, other animals, and the environment, in different geographic locations.

14.
Antibiotics (Basel) ; 12(9)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37760699

RESUMO

Freshwater bivalves are widely used as accumulation indicators and monitoring tools for assessing contaminant effects on different levels of biological integration. This pilot study aimed to explore the phylogenetic diversity of Escherichia coli isolated from freshwater mussels (Margaritifera margaritifera and Potomida littoralis) and characterize their phenotypes and antibiotic resistance profiles. Samples were collected in the Rabaçal and Tua Rivers, in the Douro basin, Portugal-two sites representing different levels of anthropogenic contamination. Antimicrobial susceptibility testing was performed via the disk diffusion method with 21 antibiotics. Results showed that 31% of isolates were multidrug-resistant (MDR). Thus, freshwater mussels provide an effective and time-integrated approach for identifying/quantifying fecal indicators, including MDR bacteria. PCR-based assays were designed for assessing phylogenetic E. coli groups. Among the E. coli isolates, the highest prevalence (44%) was observed in group D or E, followed by group E or Clade I (25%), group A (19%), and group B1 (13%). E. coli isolated from M. margaritifera predominantly exhibited a higher prevalence of phylogroups D or E, whereas E. coli from P. littoralis showed associations with phylogroups E or clade I, B1, A, and D or E. Our results provide new insights into the phylogenetic diversity of E. coli in freshwater bivalves. Additionally, the findings highlight the possible linkage of phylogroups with the host species, the geographical location in the water stream, and human activity. Using E. coli as a bioindicator isolated from freshwater mussels helps us grasp how human activities affect the environment. This study has important implications for those interested in safeguarding water resources, especially in tackling antibiotic resistance in aquatic ecosystems.

15.
Sci Total Environ ; 875: 162646, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36889402

RESUMO

Coaggregation plays an important role in the development of multispecies biofilms in different environments, often serving as an active bridge between biofilm members and other organisms that, in their absence, would not integrate the sessile structure. The ability of bacteria to coaggregate has been reported for a limited number of species and strains. In this study, 38 bacterial strains isolated from drinking water (DW) were investigated for their ability to coaggregate, in a total of 115 pairs of combinations. Among these isolates, only Delftia acidovorans (strain 005P) showed coaggregating ability. Coaggregation inhibition studies have shown that the interactions mediating D. acidovorans 005P coaggregation were both polysaccharide-protein and protein-protein, depending on the interacting partner bacteria. Dual-species biofilms of D. acidovorans 005P and other DW bacteria were developed to understand the role of coaggregation on biofilm formation. Biofilm formation by Citrobacter freundii and Pseudomonas putida strains highly benefited from the presence of D. acidovorans 005P, apparently due to the production of extracellular molecules/public goods favouring microbial cooperation. This was the first time that the coaggregation capacity of D. acidovorans was demonstrated, highlighting its role in providing a metabolic opportunity for partner bacteria.


Assuntos
Delftia acidovorans , Água Potável , Biofilmes , Bactérias , Citrobacter freundii
16.
Animals (Basel) ; 13(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37106905

RESUMO

As in human medicine, in veterinary medicine, chronic wounds are often related to polymicrobial infections and the presence of a biofilm, which compromises the effectiveness of therapeutic approaches. In this study, a Lusitano mare presented a 21-day-old chronic wound that was only being treated with an antiseptic. A swab sample was collected, and three isolates of Staphylococcus aureus and one of Pseudomonas aeruginosa were isolated. S. aureus did not show resistance to a panel of antibiotics. However, the P. aeruginosa isolate showed a resistance profile to carbapenems and fluoroquinolones, which may suggest a cross-resistance between antiseptic and antibiotics, given that no antibiotic therapy was applied to the wound or the mare in the previous year. Further experiments were conducted to assess the ability of the isolates to form biofilms, and to ascertain their susceptibility to gentamicin. The results demonstrated that the isolates produced biofilms. Gentamicin at the minimum inhibitory concentration (MIC) and 10× MIC caused biofilm removal between 59.3% and 85.7%, with the highest removal percentage being obtained for the P. aeruginosa isolate (at 10× MIC concentration). This study reveals that an equine wound was colonized by antibiotic resistant bacteria, and that all the wound colonizers could form biofilms, demonstrating the relevance of an adequate diagnosis and treatment when there is a suspicion of a biofilm-infected wound. It also highlights the possibility of resistance transmission between animals, animals and humans, or animals and the environment.

17.
Antibiotics (Basel) ; 12(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36830271

RESUMO

The treatment of bacterial infections has been troubled by the increased resistance to antibiotics, instigating the search for new antimicrobial therapies. Phytochemicals have demonstrated broad-spectrum and effective antibacterial effects as well as antibiotic resistance-modifying activity. In this study, perillyl alcohol and hydrocinnamic acid were characterized for their antimicrobial action against Escherichia coli. Furthermore, dual and triple combinations of these molecules with the antibiotics chloramphenicol and amoxicillin were investigated for the first time. Perillyl alcohol had a minimum inhibitory concentration (MIC) of 256 µg/mL and a minimum bactericidal concentration (MBC) of 512 µg/mL. Hydrocinnamic acid had a MIC of 2048 µg/mL and an MBC > 2048 µg/mL. Checkerboard and time-kill assays demonstrated synergism or additive effects for the dual combinations chloramphenicol/perillyl alcohol, chloramphenicol/hydrocinnamic acid, and amoxicillin/hydrocinnamic acid at low concentrations of both molecules. Combenefit analysis showed synergism for various concentrations of amoxicillin with each phytochemical. Combinations of chloramphenicol with perillyl alcohol and hydrocinnamic acid revealed synergism mainly at low concentrations of antibiotics (up to 2 µg/mL of chloramphenicol with perillyl alcohol; 0.5 µg/mL of chloramphenicol with hydrocinnamic acid). The results highlight the potential of combinatorial therapies for microbial growth control, where phytochemicals can play an important role as potentiators or resistance-modifying agents.

18.
J Fungi (Basel) ; 9(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132800

RESUMO

Lentinula edodes, commonly known as shiitake mushroom, is renowned for its potential health advantages. This research delves into the often-overlooked by-product of shiitake cultivation, namely spent mushroom substrate (SMS), to explore its nutraceutical properties. The SMS samples were collected and subjected to different extraction methods, namely short or long agitation, and ultrasound-assisted extractions using different temperatures and distilled water or a 50% (v/v) ethanol as solvents. The extracts were tested for phenolic content (total phenols, ortho-diphenols, and flavonoids), antioxidant capacity (DPPH, 2,2-diphenyl-1 picrylhydrazyl; ABTS, 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid; and FRAP, ferric reducing antioxidant power), and antibacterial activity. The different extraction methods revealed substantial variations (p < 0.05) in phenolic composition and antioxidant capacity. The highest phenolic content and antioxidant capacity were achieved using 24 h extraction, agitation, 50 °C, and ethanol as the solvent. Furthermore, the extracted compounds displayed antibacterial activity in specific tested bacterial strains. This study highlights the nutraceutical potential of L. edodes' SMS, positioning it as a valuable dietary supplement for animal nutrition, with emphasis on its prebiotic properties. Hence, this research unveils the promising health benefits of SMS in both human and animal nutrition.

19.
Foodborne Pathog Dis ; 9(4): 338-45, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22356572

RESUMO

The aim of this study was to evaluate the effects of various glucosinolate-derived hydrolysis products (HP) as antibacterial compounds against Enterobacteriaceae and Enterococcaceae isolated from intestinal segments of healthy pigs collected directly from slaughter-houses in the North of Portugal. Using a previously described disk-diffusion bioassay, all HP were tested at six different doses (0.015, 0.15, 0.75, 1.5, 3.0, and 15.0 µmoles) in dimethyl-sulfoxide (DMSO), with the exception of sulforaphane (SFN), which was not tested at 15.0 µmoles. Positive (antibiotic standard) and negative controls (DMSO) were included in all experiments. All the experiments were conducted in triplicate. In vitro inhibition of the bacterial growth by the HP was proportional to the concentration used and in many cases was even higher than for the gentamycin, the antibiotic control. The results clearly showed that the glucosinolates-derived HPs were very effective in vitro inhibitors of bacterial growth. The natural products, and specifically the isothiocyanates, should be evaluated as potential alternative control agents for potentially pathogenic bacteria (e.g., dietary amendment of pig foods with glucosinolate-containing plants).


Assuntos
Anti-Infecciosos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterococcus/efeitos dos fármacos , Glucosinolatos/farmacologia , Doenças dos Suínos/microbiologia , Matadouros , Animais , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/veterinária , Enterococcus/crescimento & desenvolvimento , Enterococcus/isolamento & purificação , Glucosinolatos/química , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Hidrólise , Íleo/microbiologia , Portugal , Suínos
20.
Environ Pollut ; 295: 118671, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34902528

RESUMO

Freshwater mussels are among the most endangered groups of fauna anywhere in world. The indiscriminate use of antibiotics has led to the emergence of resistant strains. These antibiotic-resistant bacteria play a key role in increasing the risk allied with the use of surface water and in spread of resistance genes. Two endangered freshwater mussel species, Margaritifera margaritifera and Potomida littoralis, were sampled at 4 sampling sites along a 50 km stretch of River Tua. Water samples were taken at same sites. Of the total of 135 isolates, 64.44% (39.26% from water and 25.19% from mussels) were coliform bacteria. Site T1, with the lowest concentration of coliform bacteria, and site T2 were the only ones where M. margaritifera was found. No E. coli isolates were found in this species and the pattern between water and mussels was similar. P. littoralis, which was present at T3/T4 sites, is the one that faces the highest concentration of bacterial toxins, which are found in treated wastewater effluents and around population centers. Sites T3/T4 have the isolates (water and mussels) with the highest resistance pattern, mainly to ß-lactams. Water and P. littoralis isolates (T3/T4) showed resistance to penicillins and their combination with clavulanic acid, and to cephalosporins, precisely to a fourth generation of cephalosporin antibiotics. The analysis provides important information on the risk to water systems, as well as the need to investigate possible management measures. It is suggested that future studies on the health status of freshwater bivalves should incorporate measures to indicate bacteriological water quality.


Assuntos
Bivalves , Animais , Bactérias , Água Doce , Rios , Alimentos Marinhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA