Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biol Trace Elem Res ; 201(11): 5257-5271, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36790584

RESUMO

Atrazine, as an herbicide, is used widely worldwide. Because of its prolonged persistence in the environment and accumulation in the body, atrazine exposure is a potential threat to human health. The present study evaluated the possible protective effects of zinc oxide nanoparticles and vitamin C against atrazine-induced hepatotoxicity in rats. Atrazine administered to rats orally at a dose of 300 mg/kg for 21 days caused liver oxidative stress as it increased malondialdehyde (MDA) formation and decreased reduced glutathione (GSH) contents. Atrazine induced inflammation accompanied by apoptosis via upregulation of hepatic gene expression levels of NF-κB, TNF-α, BAX, and caspase-3 and downregulation of Bcl-2 gene expression levels. Additionally, it disturbed the metabolic activities of cytochrome P450 as it downregulated hepatic gene expression levels of CYP1A1, CYP1B1, CYP2E1. The liver function biomarkers were greatly affected upon atrazine administration, and the serum levels of AST and ALT were significantly increased, while BWG%, albumin, globulins, and total proteins levels were markedly decreased. As a result of the above-mentioned influences of atrazine, histopathological changes in liver tissue were recorded in our findings. The administration of zinc oxide nanoparticles or vitamin C orally at a dose of 10 mg/kg and 200 mg/kg, respectively, for 30 days prior and along with atrazine, could significantly ameliorate the oxidative stress, inflammation, and apoptosis induced by atrazine and regulated the hepatic cytochrome P450 activities. Furthermore, they improved liver function biomarkers and histopathology. In conclusion, our results revealed that zinc oxide nanoparticles and vitamin C supplementations could effectively protect against atrazine-induced hepatotoxicity.


Assuntos
Atrazina , Doença Hepática Induzida por Substâncias e Drogas , Nanopartículas , Óxido de Zinco , Humanos , Ratos , Animais , Óxido de Zinco/farmacologia , Atrazina/toxicidade , Atrazina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Fígado/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Apoptose , Vitaminas/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Imunomodulação
2.
J Toxicol ; 2021: 4411316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34608387

RESUMO

Nicotine is the major alkaloid present in cigarettes that induces various biochemical and behavioral changes. Nanonaringenin (NNG) and vitamin E are antioxidants that are reported to mitigate serious impairments caused by some toxins and oxidants. Thus, we aimed to investigate the efficacy of NNG, vitamin E, and their combinations to ameliorate behavioral, biochemical, and histological alterations induced by nicotine in rats. Adult male albino rats were randomly grouped into six equal groups (10 rats/group): control, N (nicotine 1 mg/kg b.w./day S/C from 15th to 45th day, 5 days a week), NNG (25 mg/kg b.w./day orally for 45 days), N + NNG, N + E (nicotine + vitamin E 200 mg/kg b.w./day orally), and N + NNG + E (nicotine + NNG + vitamin E at the aforementioned doses). Behavioral tests were conducted on day 15 and 30 postnicotine injection, while memory tests, brain neurotransmitters, antioxidants, and histopathological examination were examined at day 30 only. As a result, nicotine impaired rats' activity (hypoactivity and hyperactivity) and memory, induced anxiolytic and anxiogenic effects on rats, and altered neurotransmitters (acetylcholinesterase, serotonin, and dopamine), and redox markers (MDA, H2O2, GSH, and catalase) levels in brain homogenates. Thickening and congestion of the meninges and degeneration of the cerebral neurons and glia cells were observed. Cosupplementation with NNG, vitamin E, and their combination with nicotine was beneficial in the alleviation of activity impairments and improved short memory and cognition defects and exploratory behaviors. Our results indicate the antioxidant potential of NNG and vitamin E by modulating redox markers and neurotransmitters in the brain. Thus, data suggest that the prophylactic use of NNG, vitamin E, and/or their combination for (45 days) may have a successful amelioration of the disrupted behavior and cognition and biochemical and histopathological alterations induced by nicotine.

3.
Oxid Med Cell Longev ; 2021: 4759821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003514

RESUMO

Heterocycles containing thienopyrimidine moieties have attracted attention due to their interesting biological and pharmacological activities. In this research article, we reported the synthesis of a series of new hybrid molecules through merging the structural features of chalcones and pyridothienopyrimidinones. Our results indicated that the synthesis of chalcone-thienopyrimidine derivatives from the corresponding thienopyrimidine and chalcones proceeded in a relatively short reaction time with good yields and high purity. Most of these novel compounds exhibited moderate to robust cytotoxicity against HepG2 and MCF-7 cancer cells similar to that of 5-fluorouracil (5-FU). The results indicated that IC50 of the two compounds (3b and 3g) showed more potent anticancer activities against HepG2 and MCF-7 than 5-FU. An MTT assay and flow cytometry showed that only 3b and 3g had anticancer activity and antiproliferative activities at the G1 phase against MCF-7 cells, while six compounds (3a-e and 3g) had cytotoxicity and cell cycle arrest at different phases against HepG2 cells. Their cytotoxicity was achieved through downregulation of Bcl-2 and upregulation of Bax, caspase-3, and caspase-9. Although all tested compounds increased oxidative stress via increment of MDA levels and decrement of glutathione reductase (GR) activities compared to control, the 3a, 3b, and 3g in HepG2 and 3b and 3g in MCF-7 achieved the target results. Moreover, there was a positive correlation between cytotoxic efficacy of the compound and apoptosis in both HepG2 (R 2 = 0.531; P = 0.001) and MCF-7 (R 2 = 0.219; P = 0.349) cell lines. The results of molecular docking analysis of 3a-g into the binding groove of Bcl-2 revealed relatively moderate binding free energies compared to the selective Bcl-2 inhibitor, DRO. Like venetoclax, compounds 3a-g showed 2 violations from Lipinski's rule. However, the results of the ADME study also revealed higher drug-likeness scores for compounds 3a-g than for venetoclax. In conclusion, the tested newly synthesized chalcone-pyridothienopyrimidinone derivatives showed promising antiproliferative and apoptotic effects. Mechanistically, the compounds increased ROS production with concomitant cell cycle arrest and apoptosis. Therefore, regulation of the cell cycle and apoptosis are possible targets for anticancer therapy. The tested compounds could be potent anticancer agents to be tested in future clinical trials after extensive pharmacodynamic, pharmacokinetic, and toxicity profile investigations.


Assuntos
Chalconas/metabolismo , Células Hep G2/metabolismo , Células MCF-7/metabolismo , Simulação de Acoplamento Molecular/métodos , Pirimidinas/metabolismo , Apoptose , Linhagem Celular Tumoral , Humanos , Estrutura Molecular
4.
Biol Trace Elem Res ; 196(2): 579-589, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31701464

RESUMO

With the progress of nanotechnology, the adverse effects of nanoscale materials are receiving much attention. Inhibition of toll-like receptor 4 (TLR-4)/nuclear factor kappa B (NF-κB) signaling is a hallmark for downregulating the expression of many inflammatory genes implicated in oxidative stress. Therefore, the present study aimed to demonstrate the influence of grape seed proanthocyanidin extract (GSE) on the hepatic TLR-4/ NF-κB signaling pathway in TiO2-NP-induced liver damage in rats. Forty male Albino rats were divided into 4 groups (n = 10): G1 was used as a control, G2 received TiO2-NPs (500 mg/kg/day orally) from the 17th to 30th day (acute toxicity), G3 received GSE (75 mg/kg/day orally) for 30 days, and G4 pre- and co-treated with GSE (for 30 days) and TiO2-NPs (from the 17th to 30th day), with the aforementioned doses. TiO2-NPs induced severe hepatic injury that was indicated by biochemical alterations in serum liver markers (acetylcholinesterase, ALT, ALP, total proteins, albumin, and direct bilirubin), oxidative stress indicators (MDA, GSH, and catalase), and histopathological alterations as well. Moreover, TiO2-NPs triggered an inflammatory response via the upregulation of TLR-4, NF-κB, NIK, and TNF-α mRNA expressions. Pre- and co-treatments with GSE alleviated the detrimental effects of TiO2-NPs which were enforced by the histopathological improvements. These results indicated that GSE effectively protected against TiO2-NP-induced hepatotoxicity via the inhibition of TLR-4/NF-κB signaling and hence suppressed the production of pro inflammatory cytokines such as TNF-α and improved the antioxidant status of the rats.


Assuntos
Antioxidantes/farmacologia , Extrato de Sementes de Uva/farmacologia , Nanopartículas/toxicidade , Proantocianidinas/farmacologia , Substâncias Protetoras/farmacologia , Titânio/toxicidade , Administração Oral , Animais , Antioxidantes/administração & dosagem , Extrato de Sementes de Uva/administração & dosagem , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Nanopartículas/administração & dosagem , Nanopartículas/química , Tamanho da Partícula , Proantocianidinas/administração & dosagem , Substâncias Protetoras/administração & dosagem , Ratos , Propriedades de Superfície , Titânio/administração & dosagem , Titânio/química , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo
5.
J Appl Physiol (1985) ; 107(3): 707-17, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19608932

RESUMO

The overproduction of very-low-density lipoprotein (VLDL) is a characteristic feature of nonalcoholic fatty liver disease (NAFLD). The aim of this study was to use a high-fat diet-induced model of NAFLD in rats to investigate 1) the influence of the disease on hepatic VLDL processing in the endoplasmic reticulum and 2) the potential modulatory effects of dietary coenzyme Q (CoQ). Rats were fed a standard low-fat diet (control) or a diet containing 35% fat (57% metabolizable energy). After 10 wk, high-fat diet-fed animals were divided into three groups: the first group was given CoQ9 (30 mg*kg body wt(-1)*day(-1) in 0.3 ml olive oil), the second group was given olive oil (0.3 ml/day) only, and the third group received no supplements. Feeding (3 high-fat diets and the control diet) was then continued for 8 wk. In all high-fat diet-fed groups, the content of triacylglycerol (TG) and cholesterol in plasma VLDL, the liver, and liver microsomes was increased, hepatic levels of apolipoprotein B48 were raised, and the activities of microsomal TG transfer protein and acyl CoA:cholesterol acyltransferase were reduced. These findings provide new evidence indicating that VLDL assembly and the inherent TG transfer to the endoplasmic reticulum are altered in NAFLD and suggest a possible explanation for both the overproduction of VLDL associated with the condition and the disease etiology itself. Dietary CoQ caused significant increases in apolipoprotein B mRNA and microsomal TG levels and altered the phospholipid content of microsomal membranes. These changes, however, may not be beneficial as they may lead to the secretion of larger, more atherogenic VLDL.


Assuntos
Dieta , Fígado Gorduroso/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Ubiquinona/metabolismo , Animais , Antioxidantes/metabolismo , Apolipoproteínas B/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/isolamento & purificação , Masculino , Microssomos Hepáticos/enzimologia , Microssomos Hepáticos/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquinona/análogos & derivados
6.
Environ Toxicol Pharmacol ; 37(1): 431-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24444696

RESUMO

In the present study, we investigated the potential protective effects of royal jelly against azathioprine-induced toxicity in rat. Intraperitoneal administration of azathioprine (50 mg/kgB.W.) induced a significant decrease in RBCs count, Hb concentration, PCV%, WBCs count, differential count and platelet count, hepatic antioxidant enzymes (reduced glutathione and glutathione s-transferase) and increase of serum transaminases (alanine aminotransferase and aspartate aminotransferase enzymes) activities, alkaline phosphatase and malondialdehyde formation. Azathioprine induced hepatotoxicity was reflected by marked pathological changes in the liver. Oral administration of royal jelly (200 mg/kgB.W.) was efficient in counteracting azathioprine toxicity whereas it altered the anemic condition, leucopenia and thrombocytopenia induced by azathioprine. Furthermore, royal jelly exerted significant protection against liver damage induced by azathioprine through reduction of the elevated activities of serum hepatic enzymes. Moreover, royal jelly blocked azathioprine-induced lipid peroxidation through decreasing the malondialdehyde formation. In conclusion, royal jelly possesses a capability to attenuate azathioprine-induced toxicity.


Assuntos
Antimetabólitos Antineoplásicos/toxicidade , Azatioprina/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ácidos Graxos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Alanina Transaminase/sangue , Fosfatase Alcalina/sangue , Anemia/induzido quimicamente , Anemia/tratamento farmacológico , Anemia/metabolismo , Anemia/patologia , Animais , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ácidos Graxos/farmacologia , Glutationa/metabolismo , Leucopenia/induzido quimicamente , Leucopenia/tratamento farmacológico , Leucopenia/metabolismo , Leucopenia/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar , Trombocitopenia/induzido quimicamente , Trombocitopenia/tratamento farmacológico , Trombocitopenia/metabolismo , Trombocitopenia/patologia
7.
Nutrition ; 25(11-12): 1157-68, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19592219

RESUMO

OBJECTIVE: The aim of this study was to investigate the development of non-alcoholic fatty liver disease (NAFLD) in response to a high-fat diet in rats and to test the hypothesis that dietary coenzyme Q monomethyl ether (CoQme) has antisteatogenic effects. METHODS: Rats were fed a standard low-fat diet (control) for 18 wk or a diet containing 35% fat (57% metabolizable energy) for 10 wk, then divided into three groups for the following 8 wk. One group was given CoQ9me (30mg/kg body weight per day in 0.3mL olive oil: high fat+CoQ9me), the second olive oil (0.3mL/d) only (high fat + olive oil), and the third group received no supplements (high fat). RESULTS: Insulin levels and the activity of alanine aminotransferase in the plasma were significantly increased in all high-fat diet groups, and the homeostasis model assessment of insulin resistance indicated insulin resistance. Triacylglycerol concentrations in whole plasma and in very low-density lipoprotein and low-density lipoprotein fractions were also raised. Liver histology showed lipid accumulation in animals fed the high-fat diets, and liver triacylglycerol levels were increased (2.5- to 3-fold) in all high-fat diet groups. These effects were not changed by the administration of CoQ9me. CONCLUSIONS: Rats fed a diet with 57% energy from fat showed insulin resistance, hypertriglyceridemia, increased very low-density lipoprotein production, hepatic steatosis, and liver damage, and thus provide a good model for the early stages of NAFLD. Dietary CoQ9me, however, did not ameliorate the damaging effects of the high-fat diet.


Assuntos
Gorduras na Dieta/efeitos adversos , Fígado Gorduroso/prevenção & controle , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ubiquinona/uso terapêutico , Alanina Transaminase/sangue , Animais , Dieta com Restrição de Gorduras , Gorduras na Dieta/administração & dosagem , Fígado Gorduroso/sangue , Fígado Gorduroso/etiologia , Hipertrigliceridemia/etiologia , Insulina/sangue , Lipídeos/sangue , Fígado/patologia , Masculino , Éteres Metílicos/farmacologia , Éteres Metílicos/uso terapêutico , Ratos , Ratos Wistar , Ubiquinona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA