Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 368, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152418

RESUMO

In recent decades, probiotics have become an acceptable aquaculture strategy for shrimp growth promotion and immune modulation. This study aimed to evaluate the effect of Bacillus velezensis on Litopenaeus vannamei following a 60-day trial. L. vannamei (3 ± 0.4 g) were distributed into four groups with three replicates per group and fed an isonitrogenous diet supplemented with B. velezensis at 0, 1 × 107, 1 × 108, and 1 × 109 CFU/g, which were defined as the control, G1, G2, and G3 groups, respectively. B. velezensis significantly improved the growth, survival rate, and proximate body composition of L. vannamei (P < 0.05). All groups fed the B. velezensis diet showed significant increases in digestive enzymes (lipase, amylase, and protease), superoxide dismutase (SOD; G3), catalase (CAT; G3, G2, and G1), lysozyme activity (G3 and G2), immunoglobulin M (IgM), bactericidal activity BA%, alkaline phosphatase (AKP), and acid phosphatase (ACP) compared with the control group (P < 0.05). Malondialdehyde (MDA), triglycerides, cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels were significantly decreased in all groups fed B. velezensis diet compared with the control group (P < 0.05). The expression levels of SOD (G3), LZM, and serine proteinase genes were significantly higher in L. vannamei fed diets containing B. velezensis than in the control group (P < 0.05). This is the first study to address the effects of B. velezensis on the expression of the LZM and serine proteinase genes in L. vannamei. L. vannamei fed diet containing B. velezensis had more B and R cells in its hepatopancreas than did the control group. In conclusion, B. velezensis is a promising probiotic that can be safely added to the diet of L. vannamei with 1 × 109 CFU/g. Its application had a positive influence on the health status, survival rate, nutritional value, and immunity of L. vannamei.


Assuntos
Ração Animal , Antioxidantes , Bacillus , Composição Corporal , Dieta , Penaeidae , Probióticos , Animais , Penaeidae/imunologia , Penaeidae/microbiologia , Penaeidae/crescimento & desenvolvimento , Probióticos/farmacologia , Probióticos/administração & dosagem , Dieta/veterinária , Ração Animal/análise , Antioxidantes/metabolismo , Suplementos Nutricionais , Aquicultura/métodos , Expressão Gênica
2.
J Fish Dis ; : e14013, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39239791

RESUMO

Parasites pose significant challenges to aquaculture and fisheries industries. Our study focuses on the Polyonchobothrium magnum and African catfish to address a potential health issue in aquaculture, explore host-parasite interactions that can help develop effective management practices to ensure fish health and industry sustainability. P. magnum was isolated from the stomach of African catfish (Clarias gariepinus) as the primary site of infection, with a prevalence of 10%. Most affected fish were heavily infected (8 out of 10). Infection was confirmed by sequencing the PCR-targeted region of the nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) gene, along with light and scanning electron microscopes. The parasite had an elongated scolex with deep bothria, a prominent apical disc wider than the scolex itself, and a four-lobed appearance. The scolex contained a central rostellum divided into two semicircles, bearing 26-30 hooks, with an average of 28. The apical disc had large hooks arranged in four quadrants, with 6-8 hooks each, averaging 7 per quadrant. No neck was observed. Phylogenetic analysis of our sequence showed a 100% match with isolates from Guangzhou, China. In infected fish, the anterior kidney showed increased expression levels of nuclear factor kappa B and lysozyme, but decreased levels of in major histocompatibility complex antigen II. Plasma analysis revealed a significant drop in superoxide dismutase, a rise in interleukin-1 beta, and lower IgM levels compared to non-infected controls. Non-infected fish displayed greater gut microbiota diversity, with dominant families including Moraxellaceae, Enterobacteriaceae, Fusobacteriaceae, and Caulobacteraceae, and prevalent genera such as Acinetobacter, Cetobacterium, and Brevundimonas. In contrast, infected fish exhibited very low diversity, with significantly higher proportions of Enterobacteriaceae (45.99%) and Aeromonadaceae (41.79%) compared to non-infected fish, which had 13.76% and 3.64% respectively. Cetobacterium somerae was prevalent in non-infected fish, while infected fish harboured Aeromonas fluvialis, Plesiomonas shigelloides, and Gallaecimonas xiamenensis. Overall, P. magnum disrupted the immune status and gut microbiota of the host, thereby impacting its health.

3.
J Environ Manage ; 351: 119845, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38109825

RESUMO

Pyrogallol promotes free radicals leading to oxidative stress and toxicity. There are however a lack of studies on oxidative stress and the antioxidant system of fish following exposure to pyrogallol. This study measured oxidative stress markers, antioxidant responses, and histological changes in catfish exposed to pyrogallol. Fish were divided into one of four experimental groups: control only, or 1, 5 or 10 mg/L pyrogallol. After 15 days, glutathione-S-transferase in the serum was decreased in fish exposed to either 5 or 10 mg/L pyrogallol relative to controls while superoxide dismutase and total antioxidant capacity were decreased significantly in fish exposed to 1, 5, or 10 mg/L pyrogallol. Conversely, catalase was increased in serum of fish exposed to 1, 5, or 10 mg/L pyrogallol compared to controls. The liver of fish treated with 1, 5, or 10 mg/L pyrogallol had significantly higher levels of oxidative stress markers (malondialdehyde, lipid peroxidation, hydroperoxide content, oxidised protein content, and DNA fragmentation %) that varied with concentration. Catfish exposed to either 1, 5, or 10 mg/L pyrogallol presented with notable histological alterations in the intestine, kidney, and muscles with prominent fibrosis, as intense deposition of collagen fibre was observed by Masson's trichrome staining. Overall, endpoints related to oxidative stress and antioxidant defence enzymes in fish may be early biomarkers of pyrogallol exposure and contamination in aquatic ecosystems. Additional studies should characterize oxidative stress indicators for their utility as biomarkers of effect.


Assuntos
Peixes-Gato , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Pirogalol/toxicidade , Pirogalol/metabolismo , Ecossistema , Estresse Oxidativo , Peixes-Gato/metabolismo , Biomarcadores/metabolismo , Peroxidação de Lipídeos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
4.
Chemosphere ; 349: 140792, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38016523

RESUMO

Pyrogallol is a naturally occurring polyphenol derived from natural plants, such as Acer rubrum and Eucalyptus sp. The current study was designed to evaluated pyrogallol-mediated toxicity at sublethal levels (1, 5, and 10 mg/L), derived from 96 h-LC50 values previously determined for African catfish (Clarias gariepinus). Immunotoxicological indices, histological, histochemical, and ultrastructural alterations in C. gariepinus were evaluated following a 15-day pyrogallol exposure. Pyrogallol decreased immune parameters [lysozyme activity (LYZ), immunoglobulin M (IgM), and phagocytic activity] and increased pro-inflammatory cytokines, interleukin-1 beta (IL-1ß), interleukin-6 (IL-6) in the serum of C. gariepinus. In addition, histopathology analysis demonstrated that exposure to pyrogallol induced injury in the liver and spleen of fish. Cellular changes in the liver include hepatocyte hydropic degeneration, melanomacrophage, vacuolated hepatocytes, congested blood, severe structural deformation, and hemorrhage. In the spleen, ellipsoid structures, melanomacrophage centers, and infiltration of inflammatory cells were evident. Together, a high frequency of histopathological lesions was scored in both the liver and spleen of C. gariepinus, which showed a dose-dependent relationship between pyrogallol exposure and histopathological indices. Our data suggest that dysfunction in the immune system may be mediated by pyrogallol-induced changes in cytokines.


Assuntos
Peixes-Gato , Poluentes Químicos da Água , Animais , Pirogalol/toxicidade , Fígado , Citocinas , Poluentes Químicos da Água/análise
5.
Environ Toxicol Pharmacol ; 109: 104481, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857774

RESUMO

Pyrogallol, a botanical hydrolysable tannin, has diverse medical and industrial applications. Its impact on aquatic ecosystems and fish health has been previously studied, revealing histopathological, immunological, biochemical, and haematological alterations in African catfish (Clarias gariepinus). In this study, the neurotoxic potential of pyrogallol was assessed through a 15-day exposure of catfish to concentrations of 1, 5, or 10 mg/L. Enzyme activities such as acetylcholinesterase (AchE), monoamine oxidase (MAO), aldehyde oxidase (AO), and nitric oxide (NO) were measured in serum and brain, along with histopathological examinations in the brain and heart. Pyrogallol exposure led to decreased AchE activity in the brain and serum, increased serum MAO activity, elevated AO in both brain and serum, and suppressed NO levels. Morphological abnormalities and dose-dependent pathological alterations were observed in the brain and heart, including neuropile deformities, shrunken Purkinje cells, cardiomyocyte degeneration, and increased collagen fibers. This suggests that pyrogallol induces adverse effects in fish.


Assuntos
Encéfalo , Peixes-Gato , Óxido Nítrico , Pirogalol , Poluentes Químicos da Água , Animais , Óxido Nítrico/metabolismo , Óxido Nítrico/sangue , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Pirogalol/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Acetilcolinesterase/sangue , Coração/efeitos dos fármacos , Miocárdio/patologia , Miocárdio/metabolismo , Monoaminoxidase/metabolismo , Cardiotoxicidade
6.
Environ Pollut ; 352: 124104, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703978

RESUMO

Endocrine disruptors are synthetic or natural chemicals that can agonize/antagonize hormone receptors or can interfere with the production and secretion of hormones, leading to altered tissue histology and physiology. Pyrogallol is a contaminant widely distributed in aquatic environments that presents health risks to both humans and animals. However, the potential for endocrine disruption by pyrogallol, particularly in fish, are lacking. The purpose of this study was to shed light on how pyrogallol may affect hormone signalling, histopathology, and reproductive outcomes in African catfish Clarias gariepinus. To investigate this, African catfish were exposed to one sublethal concentration of pyrogallol at either 0, 1, 5 or 10 mg/L for 15 days. We then assessed the effects of pyrogallol on the thyroid gland as well as the reproductive system by measuring sex hormone, seminal quality, gonadal histopathology, and histochemistry. Thyroid stimulating hormone and thyroxine showed notable decreases in catfish, and triiodothyronine was decreased with 10 mg/L pyrogallol. Unlike luteinizing hormone, follicle-stimulating hormone was significantly reduced in fish following exposure to pyrogallol relative to controls. Testosterone was also decreased in fish following pyrogallol exposure, whereas 17ß-estradiol increased in catfish exposed to pyrogallol. Additionally, in response to pyrogallol toxicity, sperm quality indices, including count, spermatocrit, motility, and sperm viability were adversely affected in a concentration-dependent manner. Pyrogallol exposure also induced several changes in the gonad following exposure to 1, 5, or 10 mg/L. Deformed tubular structures, vacuolation, thickening of the basement membrane, hypertrophy of the seminiferous tubules, intense melanomacrophage localization, spermatozoa loss, and necrosis were all observed in the testes. In the ovary, atretic follicles, deteriorated mature oocytes, degenerated yolk globules, and an increase in perinucleolar oocytes were observed in catfish exposed to pyrogallol. These findings suggest that pyrogallol may act as endocrine disrupting substance in aquatic environments. Further research on the mechanisms by which pyrogallol impairs endocrine systems, particularly in fish, is recommended.


Assuntos
Peixes-Gato , Disruptores Endócrinos , Pirogalol , Reprodução , Poluentes Químicos da Água , Animais , Peixes-Gato/fisiologia , Disruptores Endócrinos/toxicidade , Poluentes Químicos da Água/toxicidade , Reprodução/efeitos dos fármacos , Masculino , Pirogalol/toxicidade , Pirogalol/análogos & derivados , Feminino , Glândula Tireoide/efeitos dos fármacos
7.
Environ Pollut ; 333: 122074, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37331582

RESUMO

Pyrogallol is widely used in several industrial applications and can subsequently contaminate aquatic ecosystems. Here, we report for the first time the presence of pyrogallol in wastewater in Egypt. Currently, there is a complete lack of toxicity and carcinogenicity data for pyrogallol exposure in fish. To address this gap, both acute and sub-acute toxicity experiments were conducted to determine the toxicity of pyrogallol in catfish (Clarias gariepinus). Behavioral and morphological endpoints were evaluated, in addition to blood hematological endpoints, biochemical indices, electrolyte balance, and the erythron profile (poikilocytosis and nuclear abnormalities). In the acute toxicity assay, it was determined that the 96 h median-lethal concentration (96 h-LC50) of pyrogallol for catfish was 40 mg/L. In sub-acute toxicity experiment, fish divided into four groups; Group 1 was the control group. Group 2 was exposed to 1 mg/L of pyrogallol, Group 3 was exposed to 5 mg/L of pyrogallol, and Group 4 was exposed to 10 mg/L of pyrogallol. Fish showed morphological changes such as erosion of the dorsal and caudal fins, skin ulcers, and discoloration following exposure to pyrogallol for 96 h. Exposure to 1, 5, or 10 mg/L pyrogallol caused a significant decrease in hematological indices, including red blood cells (RBCs), hemoglobin, hematocrit, white blood cells (WBC), thrombocytes, and large and small lymphocytes in a dose-dependent manner. Several biochemical parameters (creatinine, uric acid, liver enzymes, lactate dehydrogenase, and glucose) were altered in a concentration dependent manner with short term exposures to pyrogallol. Pyrogallol exposure also caused a significant concentration-dependent rise in the percentage of poikilocytosis and nuclear abnormalities of RBCs in catfish. In conclusion, our data suggest that pyrogallol should be considered further in environmental risk assessments of aquatic species.


Assuntos
Peixes-Gato , Poluentes Químicos da Água , Animais , Pirogalol/toxicidade , Ecossistema , Eritrócitos , Hemoglobinas , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA