Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Chem Phys ; 156(10): 105104, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35291797

RESUMO

We model the transport of electrically charged solute molecules by a laminar flow within a nanoslit microfluidic channel with electrostatic surface potential. We derive the governing convection-diffusion equation, solve it numerically, and compare it with a Taylor-Aris-like approximation, which gives excellent results for small Péclet numbers. We discuss our results in light of designing an assay that can measure simultaneously the hydrodynamic size and electric charge of single molecules by tracking their motion in such nanoslit channels with electrostatic surface potential.

2.
Biophys Rep (N Y) ; 4(2): 100155, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38590949

RESUMO

Time-resolved fluorescence spectroscopy plays a crucial role when studying dynamic properties of complex photochemical systems. Nevertheless, the analysis of measured time decays and the extraction of exponential lifetimes often requires either the experimental assessment or the modeling of the instrument response function (IRF). However, the intrinsic nature of the IRF in the measurement process, which may vary across measurements due to chemical and instrumental factors, jeopardizes the results obtained by reconvolution approaches. In this paper, we introduce a novel methodology, called blind instrument response function identification (BIRFI), which enables the direct estimation of the IRF from the collected data. It capitalizes on the properties of single exponential signals to transform a deconvolution problem into a well-posed system identification problem. To delve into the specifics, we provide a step-by-step description of the BIRFI method and a protocol for its application to fluorescence decays. The performance of BIRFI is evaluated using simulated and time-correlated single-photon counting data. Our results demonstrate that the BIRFI methodology allows an accurate recovery of the IRF, yielding comparable or even superior results compared with those obtained with experimental IRFs when they are used for reconvolution by parametric model fitting.

3.
J Phys Chem Lett ; 13(21): 4823-4830, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35616286

RESUMO

We present a new method that combines fluorescence correlation spectroscopy (FCS) on the microsecond time scale with fluorescence antibunching measurements on the nanosecond time scale for measuring photophysical rate constants of fluorescent molecules. The antibunching measurements allow us to quantify the average excitation rate of fluorescent molecules within the confocal detection volume of the FCS measurement setup. Knowledge of this value allows us then to quantify, in an absolute manner, the intersystem crossing rate and triplet state lifetime from the microsecond temporal decay of the FCS curves. We present a theoretical analysis of the method and estimate the maximum bias caused by the averaging of all quantities (excitation rate and photophysical rates) over the confocal detection volume, and we show that this bias is smaller than 5% in most cases. We apply the method for measuring the photophysical rate constants of the widely used dyes Rhodamine 110 and ATTO 655.


Assuntos
Corantes Fluorescentes , Corantes Fluorescentes/química , Espectrometria de Fluorescência/métodos
4.
FEBS J ; 288(5): 1648-1663, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32814359

RESUMO

The N-terminal segment of the chemokine receptor Human CC chemokine receptor 5 (CCR5), Nt-CCR5, contains four tyrosine residues, Y3, Y10, Y14, and Y15. Sulfation of at least two of these tyrosine residues was found to be essential for high-affinity binding of CCR5 to its chemokine ligands. Here, we show that among the monosulfated Nt-CCR5(8-20) peptide surrogates (sNt-CCR5) those sulfated at Y15 and Y14 have the highest affinity for the CC chemokine ligand 5 (CCL5) chemokine in comparison with monosulfation at position Y10. Sulfation at Y3 was not investigated. A peptide sulfated at both Y14 and Y15 has the highest affinity for CCL5 by up to a factor of 3, in comparison with the other disulfated (sNt-CCR5) peptides. Chemical shift perturbation analysis and transferred nuclear Overhauser effect measurements indicate that the sulfated tyrosine residues interact with the same CCL5-binding pocket and that each of the sulfated tyrosines at positions 10, 14, and 15 can occupy individually the binding site on CCL5 in a similar manner, although with somewhat different affinity, suggesting the possibility of allovalency in sulfated Nt-CCR5 peptides. The affinity of the disulfated peptides to CCL5 could be increased by this allovalency and by stronger electrostatic interactions.


Assuntos
Quimiocina CCL5/química , Processamento de Proteína Pós-Traducional , Receptores CCR5/química , Sulfatos/química , Tirosina/química , Sequência de Aminoácidos , Sítios de Ligação , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Expressão Gênica , Humanos , Ligantes , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores CCR5/genética , Receptores CCR5/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Sulfatos/metabolismo , Tirosina/metabolismo
5.
Front Immunol ; 8: 1335, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29085375

RESUMO

Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination and consequent neuron injury. Although the pathogenesis of MS is largely unknown, a breach in immune self-tolerance to myelin followed by development of autoreactive encephalitogenic T cells is suggested to play the central role. The myelin basic protein (MBP) is believed to be one of the main targets for autoreactive lymphocytes. Recently, immunodominant MBP peptides encapsulated into the mannosylated liposomes, referred as Xemys, were shown to suppress development of experimental autoimmune encephalomyelitis, a rodent model of MS, and furthermore passed the initial stage of clinical trials. Here, we investigated the role of individual polypeptide components [MBP peptides 46-62 (GH17), 124-139 (GK16), and 147-170 (QR24)] of this liposomal peptide therapeutic in cytokine release and activation of immune cells from MS patients and healthy donors. The overall effects were assessed using peripheral blood mononuclear cells (PBMCs), whereas alterations in antigen-presenting capacities were studied utilizing plasmacytoid dendritic cells (pDCs). Among three MBP-immunodominant peptides, QR24 and GK16 activated leukocytes, while GH17 was characterized by an immunosuppressive effect. Peptides QR24 and GK16 upregulated CD4 over CD8 T cells and induced proliferation of CD25+ cells, whereas GH17 decreased the CD4/CD8 T cell ratio and had limited effects on CD25+ T cells. Accordingly, components of liposomal peptide therapeutic differed in upregulation of cytokines upon addition to PBMCs and pDCs. Peptide QR24 was evidently more effective in upregulation of pro-inflammatory cytokines, whereas GH17 significantly increased production of IL-10 through treated cells. Altogether, these data suggest a complexity of action of the liposomal peptide therapeutic that does not seem to involve simple helper T cells (Th)-shift but rather the rebalancing of the immune system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA