Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dev Growth Differ ; 62(6): 398-406, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32329058

RESUMO

The GABAergic synapses, a primary inhibitory synapse in the mammalian brain, is important for the normal development of brain circuits, and for the regulation of the excitation-inhibition balance critical for brain function from the developmental stage throughout life. However, the molecular mechanism underlying the formation, maintenance, and modulation of GABAergic synapses is less understood compared to that of excitatory synapses. Quantum dot-single particle tracking (QD-SPT), a super-resolution imaging technique that enables the analysis of membrane molecule dynamics at single-molecule resolution, is a powerful tool to analyze the behavior of proteins and lipids on the plasma membrane. In this review, we summarize the recent application of QD-SPT in understanding of GABAergic synaptic transmission. Here we introduce QD-SPT experiments that provide further insights into the molecular mechanism supporting GABAergic synapses. QD-SPT studies revealed that glutamate and Ca2+ signaling is involved in (a) the maintenance of GABAergic synapses, (b) GABAergic long-term depression, and GABAergic long-term potentiation, by specifically activating signaling pathways unique to each phenomenon. We also introduce a novel Ca2+ imaging technique to describe the diversity of Ca2+ signals that may activate the downstream signaling pathways that induce specific biological output.


Assuntos
Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Receptores de GABA-A/metabolismo , Animais , Sinalização do Cálcio , Difusão , Humanos , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Transmissão Sináptica
2.
Biochem Biophys Res Commun ; 486(4): 879-885, 2017 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-28336440

RESUMO

Astrocytes play key roles in the central nervous system and regulate local blood flow and synaptic transmission via intracellular calcium (Ca2+) signaling. Astrocytic Ca2+ signals are generated by multiple pathways: Ca2+ release from the endoplasmic reticulum (ER) via the inositol 1, 4, 5-trisphosphate receptor (IP3R) and Ca2+ influx through various Ca2+ channels on the plasma membrane. However, the Ca2+ channels involved in astrocytic Ca2+ homeostasis or signaling have not been fully characterized. Here, we demonstrate that spontaneous astrocytic Ca2+ transients in cultured hippocampal astrocytes were induced by cooperation between the Ca2+ release from the ER and the Ca2+ influx through store-operated calcium channels (SOCCs) on the plasma membrane. Ca2+ imaging with plasma membrane targeted GCaMP6f revealed that spontaneous astroglial Ca2+ transients were impaired by pharmacological blockade of not only Ca2+ release through IP3Rs, but also Ca2+ influx through SOCCs. Loss of SOCC activity resulted in the depletion of ER Ca2+, suggesting that SOCCs are activated without store depletion in hippocampal astrocytes. Our findings indicate that sustained SOCC activity, together with that of the sarco-endoplasmic reticulum Ca2+-ATPase, contribute to the maintenance of astrocytic Ca2+ store levels, ultimately enabling astrocytic Ca2+ signaling.


Assuntos
Astrócitos/fisiologia , Canais de Cálcio/fisiologia , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ativação do Canal Iônico/fisiologia , Animais , Células Cultivadas , Hipocampo , Ratos , Ratos Wistar , Retículo Sarcoplasmático
3.
Biochem Biophys Res Commun ; 479(1): 67-73, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27616195

RESUMO

Calcium (Ca(2+)) is a versatile intracellular second messenger that operates in various signaling pathways leading to multiple biological outputs. The diversity of spatiotemporal patterns of Ca(2+) signals, generated by the coordination of Ca(2+) influx from the extracellular space and Ca(2+) release from the intracellular Ca(2+) store the endoplasmic reticulum (ER), is considered to underlie the diversity of biological outputs caused by a single signaling molecule. However, such Ca(2+) signaling diversity has not been well described because of technical limitations. Here, we describe a new method to report Ca(2+) signals at subcellular resolution. We report that OER-GCaMP6f, a genetically encoded Ca(2+) indicator (GECI) targeted to the outer ER membrane, can monitor Ca(2+) release from the ER at higher spatiotemporal resolution than conventional GCaMP6f. OER-GCaMP6f was used for in vivo Ca(2+) imaging of C. elegans. We also found that the spontaneous Ca(2+) elevation in cultured astrocytes reported by OER-GCaMP6f showed a distinct spatiotemporal pattern from that monitored by plasma membrane-targeted GCaMP6f (Lck-GCaMP6f); less frequent Ca(2+) signal was detected by OER-GCaMP6f, in spite of the fact that Ca(2+) release from the ER plays important roles in astrocytes. These findings suggest that targeting of GECIs to the ER outer membrane enables sensitive detection of Ca(2+) release from the ER at subcellular resolution, avoiding the diffusion of GECI and Ca(2+). Our results indicate that Ca(2+) imaging with OER-GCaMP6f in combination with Lck-GCaMP6f can contribute to describing the diversity of Ca(2+) signals, by enabling dissection of Ca(2+) signals at subcellular resolution.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Animais , Animais Geneticamente Modificados , Astrócitos/citologia , Astrócitos/metabolismo , Células COS , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Chlorocebus aethiops , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Microscopia Confocal , Ratos Wistar , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Imagem com Lapso de Tempo/métodos
4.
J Neurosci Res ; 88(16): 3433-46, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20890994

RESUMO

Synaptic plasticity, especially structural plasticity, is thought to be a basis for long-lasting memory. We previously reported that, in rat hippocampus slice cultures, repeated induction of long-term depression (LTD) by application of a metabotropic glutamate receptor (mGluR) agonist led to slowly developing, long-lasting synaptic suppression coupled with synapse elimination. We referred to this phenomenon as LOSS (LTD-repetition-operated synaptic suppression) to discriminate it from conventional single LTD and proposed it as a model for analyzing structural plasticity. Recently, proneurotrophin-activated p75(NTR) signaling has been gaining attention as a possible pathway for the regulation of both neuronal apoptosis and synaptic plasticity. In this study, we examined whether this signaling has a role in the establishment of LOSS. The application of anisomycin indicated that, for LOSS to occur, novel protein synthesis is needed within 6 hr after the induction of mGluR-dependent LTD, which demonstrates that LOSS is an active process and therefore is not due to withering in response to a shortage of trophic factors. Furthermore, we found that pro-BDNF (a species of proneurotrophins) is newly synthesized within 6 hr after the induction of LTD. We therefore exogenously applied a cleavage-resistant form of pro-BDNF, finding synaptic suppression similar to LOSS. LOSS could be abolished by the application of an antibody that binds to and neutralizes p75(NTR) following repeated LTD induction. These results suggest involvement of the p75(NTR) signaling pathway in the long-lasting decremental form of synaptic plasticity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Neurônios/metabolismo , Precursores de Proteínas/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Animais , Apoptose/fisiologia , Técnicas In Vitro , Fatores de Crescimento Neural/metabolismo , Inibição Neural/fisiologia , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/agonistas , Transdução de Sinais/fisiologia
5.
Sci Rep ; 9(1): 3917, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850696

RESUMO

We investigated the relationship between whisker mechanoreceptive inputs and the neural responses to optical stimulation in layer 2/upper 3 (L2/U3) of the barrel cortex using optogenetics since, ideally, we should investigate interactions among inputs with spatiotemporal acuity. Sixteen whisker points of a transgenic rat (W-TChR2V4), that expresses channelrhodopsin 2 (ChR2)-Venus conjugate (ChR2V) in the peripheral nerve endings surrounding the whisker follicles, were respectively connected one-by-one with 16 LED-coupled optical fibres, which illuminated the targets according to a certain pattern in order to evaluate interactions among the inputs in L2/U3. We found that the individual L2/U3 neurons frequently received excitatory inputs from multiple whiskers that were arrayed in a row. Although the interactions among major afferent inputs (MAIs) were negligible, negative interactions with the surrounding inputs suggest that the afferent inputs were integrated in the cortical networks to enhance the contrast of an array to its surroundings. With its simplicity, reproducibility and spatiotemporal acuity, the optogenetic approach would provide an alternative way to understand the principles of afferent integration in the cortex and should complement knowledge obtained by experiments using more natural stimulations.


Assuntos
Optogenética/métodos , Córtex Somatossensorial/fisiologia , Animais , Feminino , Luz , Masculino , Mecanorreceptores/citologia , Mecanorreceptores/fisiologia , Neurônios Aferentes/citologia , Neurônios Aferentes/fisiologia , Optogenética/instrumentação , Estimulação Física , Ratos , Ratos Transgênicos , Córtex Somatossensorial/citologia , Vibrissas/inervação
6.
Biophys Physicobiol ; 14: 13-22, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28409086

RESUMO

Channelrhodopsin (ChR)-1 and ChR2 were the first-identified members of ChRs which are a growing subfamily of microbial-type rhodopsins. Light absorption drives the generation of a photocurrent in cell membranes expressing ChR2. However, the photocurrent amplitude attenuates and becomes steady-state during prolonged irradiation. This process, called desensitization or inactivation, has been attributed to the accumulation of intermediates less conductive to cations. Here we provided evidence that the dark-adapted (DA) photocurrent before desensitization is kinetically different from the light-adapted (LA) one after desensitization, that is, the deceleration of both basal-to-conductive and conductive-to-basal transitions. When the kinetics were compared between the DA and LA photocurrents for the ChR1/2 chimeras, the transmembrane helices, TM1 and TM2, were the determinants of both basal-to-conductive and conductive-to-basal transitions, whereas TM4 may contribute to the basal-to-conductive transitions and TM5 may contribute to the conductive-to-basal transitions, respectively. The fact that the desensitization-dependent decrease of the basal-to-conductive and conductive-to-basal transitions was facilitated by the TM1 exchange from ChR2 to ChR1 and reversed by the further TM2 exchange suggests that the conformation change for the channel gating is predominantly regulated by the interaction between TM1 and TM2. Although the exchange of TM1 from ChR2 to ChR1 showed no obvious influence on the spectral sensitivity, this exchange significantly induced the desensitization-dependent blue shift. Therefore, the TM1 and 2 are the main structures involved in two features of the desensitization, the stabilization of protein conformation and the charge distribution around the retinal-Schiff base (RSB+).

7.
Sci Rep ; 5: 7707, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25573377

RESUMO

Memory is fixed solidly by repetition. However, the cellular mechanism underlying this repetition-dependent memory consolidation/reconsolidation remains unclear. In our previous study using stable slice cultures of the rodent hippocampus, we found long-lasting synaptic enhancement/suppression coupled with synapse formation/elimination after repeated inductions of chemical LTP/LTD, respectively. We proposed these phenomena as useful model systems for analyzing repetition-dependent memory consolidation. Recently, we analyzed the dynamics of dendritic spines during development of the enhancement, and found that the spines increased in number following characteristic stochastic processes. The current study investigates spine dynamics during the development of the suppression. We found that the rate of spine retraction increased immediately leaving that of spine generation unaltered. Spine elimination occurred independent of the pre-existing spine density on the dendritic segment. In terms of elimination, mushroom-type spines were not necessarily more stable than stubby-type and thin-type spines.


Assuntos
Espinhas Dendríticas/fisiologia , Potenciação de Longa Duração , Sinapses/fisiologia , Animais , Espinhas Dendríticas/efeitos dos fármacos , Corantes Fluorescentes/química , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Fatores de Tempo
8.
Sci Rep ; 3: 3185, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24212565

RESUMO

The repetition of experience is often necessary to establish long-lasting memory. However, the cellular mechanisms underlying this repetition-dependent consolidation of memory remain unclear. We previously observed in organotypic slice cultures of the rodent hippocampus that repeated inductions of long-term potentiation (LTP) led to a slowly developing long-lasting synaptic enhancement coupled with synaptogenesis. We also reported that repeated inductions of long-term depression (LTD) produced a long-lasting synaptic suppression coupled with synapse elimination. We proposed these phenomena as useful in vitro models for analyzing repetition-dependent consolidation. Here, we hypothesized that the enhancement and suppression are mediated by the brain-derived neurotrophic factor (BDNF)-TrkB signaling pathway and the proBDNF-p75(NTR) pathway, respectively. When we masked the respective pathways, reversals of the enhancement and suppression resulted. These results suggest the alternative activation of the p75(NTR) pathway by BDNF under TrkB-masking conditions and of the TrkB pathway by proBDNF under p75(NTR)-masking conditions, thus supporting the aforementioned hypothesis.


Assuntos
Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Receptor trkB/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Anticorpos/imunologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colforsina/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/metabolismo , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor trkB/imunologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA