Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 612(7941): 795-801, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36517601

RESUMO

The sodium/iodide symporter (NIS) is the essential plasma membrane protein that mediates active iodide (I-) transport into the thyroid gland, the first step in the biosynthesis of the thyroid hormones-the master regulators of intermediary metabolism. NIS couples the inward translocation of I- against its electrochemical gradient to the inward transport of Na+ down its electrochemical gradient1,2. For nearly 50 years before its molecular identification3, NIS was the molecule at the centre of the single most effective internal radiation cancer therapy: radioiodide (131I-) treatment for thyroid cancer2. Mutations in NIS cause congenital hypothyroidism, which must be treated immediately after birth to prevent stunted growth and cognitive deficiency2. Here we report three structures of rat NIS, determined by single-particle cryo-electron microscopy: one with no substrates bound; one with two Na+ and one I- bound; and one with one Na+ and the oxyanion perrhenate bound. Structural analyses, functional characterization and computational studies show the substrate-binding sites and key residues for transport activity. Our results yield insights into how NIS selects, couples and translocates anions-thereby establishing a framework for understanding NIS function-and how it transports different substrates with different stoichiometries and releases substrates from its substrate-binding cavity into the cytosol.


Assuntos
Iodetos , Sódio , Simportadores , Animais , Ratos , Microscopia Crioeletrônica , Iodetos/metabolismo , Sódio/metabolismo , Simportadores/química , Simportadores/metabolismo , Simportadores/ultraestrutura , Sítios de Ligação , Especificidade por Substrato , Transporte de Íons
2.
Angiogenesis ; 25(2): 205-224, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34665379

RESUMO

In mice, embryonic dermal lymphatic development is well understood and used to study gene functions in lymphangiogenesis. Notch signaling is an evolutionarily conserved pathway that modulates cell fate decisions, which has been shown to both inhibit and promote dermal lymphangiogenesis. Here, we demonstrate distinct roles for Notch4 signaling versus canonical Notch signaling in embryonic dermal lymphangiogenesis. Actively growing embryonic dermal lymphatics expressed NOTCH1, NOTCH4, and DLL4 which correlated with Notch activity. In lymphatic endothelial cells (LECs), DLL4 activation of Notch induced a subset of Notch effectors and lymphatic genes, which were distinctly regulated by Notch1 and Notch4 activation. Treatment of LECs with VEGF-A or VEGF-C upregulated Dll4 transcripts and differentially and temporally regulated the expression of Notch1 and Hes/Hey genes. Mice nullizygous for Notch4 had an increase in the closure of the lymphangiogenic fronts which correlated with reduced vessel caliber in the maturing lymphatic plexus at E14.5 and reduced branching at E16.5. Activation of Notch4 suppressed LEC migration in a wounding assay significantly more than Notch1, suggesting a dominant role for Notch4 in regulating LEC migration. Unlike Notch4 nulls, inhibition of canonical Notch signaling by expressing a dominant negative form of MAML1 (DNMAML) in Prox1+ LECs led to increased lymphatic density consistent with an increase in LEC proliferation, described for the loss of LEC Notch1. Moreover, loss of Notch4 did not affect LEC canonical Notch signaling. Thus, we propose that Notch4 signaling and canonical Notch signaling have distinct functions in the coordination of embryonic dermal lymphangiogenesis.


Assuntos
Linfangiogênese , Vasos Linfáticos , Animais , Células Endoteliais/metabolismo , Linfangiogênese/fisiologia , Sistema Linfático/metabolismo , Vasos Linfáticos/metabolismo , Camundongos , Receptores Notch/metabolismo , Transdução de Sinais
3.
Elife ; 72018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30152757

RESUMO

Cycling cells maintain centriole number at precisely two per cell in part by limiting their duplication to S phase under the control of the cell cycle machinery. In contrast, postmitotic multiciliated cells (MCCs) uncouple centriole assembly from cell cycle progression and produce hundreds of centrioles in the absence of DNA replication to serve as basal bodies for motile cilia. Although some cell cycle regulators have previously been implicated in motile ciliogenesis, how the cell cycle machinery is employed to amplify centrioles is unclear. We use transgenic mice and primary airway epithelial cell culture to show that Cdk2, the kinase responsible for the G1 to S phase transition, is also required in MCCs to initiate motile ciliogenesis. While Cdk2 is coupled with cyclins E and A2 during cell division, cyclin A1 is required during ciliogenesis, contributing to an alternative regulatory landscape that facilitates centriole amplification without DNA replication.


Assuntos
Cílios/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Movimento , Organogênese , Animais , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Centríolos/efeitos dos fármacos , Centríolos/metabolismo , Cílios/efeitos dos fármacos , Ciclina A1/metabolismo , Ciclina E/metabolismo , Células Epiteliais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitose/efeitos dos fármacos , Mutação/genética , Organogênese/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Purinas/farmacologia , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Traqueia/metabolismo , Traqueia/ultraestrutura , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA