Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(1): e23570, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37929796

RESUMO

Mitochondrial toxicity has been shown to contribute to a variety of organ toxicities such as, brain, heart, kidney, and liver. Ifosfamide (IFO) as an anticancer drug, is associated with increased risk of neurotoxicity, cardiotoxicity nephrotoxicity, hepatotoxicity, and hemorrhagic cystitis. The aim of this study was to evaluate the direct effect of IFO on isolated mitochondria obtained from the rat brain, heart, kidney, and liver. Mitochondria were isolated with mechanical lysis and differential centrifugation from different organs and treated with various concentrations of IFO. Using biochemical and flowcytometry assays, we evaluated mitochondrial succinate dehydrogenase (SDH) activity, mitochondrial swelling, lipid peroxidation, reactive oxygen species (ROS) production, and mitochondrial membrane potential (MMP). Our data showed that IFO did not cause deleterious alterations in mitochondrial functions, mitochondrial swelling, lipid peroxidation ROS formation, and MMP collapse in mitochondria isolated from brain, heart, kidney, and liver. Altogether, the data showed that IFO is not directly toxic in mitochondria isolated from brain, heart, kidney, and liver. This study proved that mitochondria alone does not play the main role in the toxicity of IFO, and suggests to reduce the toxicity of this drug, other pathways resulting in the production of toxic metabolites should be considered.


Assuntos
Ifosfamida , Estresse Oxidativo , Ratos , Animais , Ifosfamida/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Rim , Potencial da Membrana Mitocondrial
2.
Drug Dev Res ; 85(4): e22199, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38812443

RESUMO

It has been reported that lipophilic statins such as atorvastatin can more readily penetrate into ß-cells and reach the mitochondria, resulting in mitochondrial dysfunction, oxidative stress, decrease in insulin release. Many studies have shown that natural products can protect mitochondrial dysfunction induced by drug in different tissue. We aimed to explore mitochondrial protection potency of hesperidin, vanillic acid, and sinapic acid as natural compounds against mitochondrial dysfunction induced by atorvastatin in pancreas isolated mitochondria. Mitochondria were isolated form rat pancreas and directly treated with toxic concentration of atorvastatin (500 µM) in presence of various concentrations hesperidin, vanillic acid, and sinapic acid (1, 10, and 100 µM) separately. Mitochondrial toxicity parameters such as the reactive oxygen species (ROS) formation, succinate dehydrogenases (SDH) activity, mitochondrial swelling, depletion of glutathione (GSH), mitochondrial membrane potential (MMP) collapse, and malondialdehyde (MDA) production were measured. Our findings demonstrated that atorvastatin directly induced mitochondrial toxicity at concentration of 500 µM and higher in pancreatic mitochondria. Except MDA, atorvastatin caused significantly reduction in SDH activity, mitochondrial swelling, ROS formation, depletion of GSH, and collapse of MMP. While, our data showed that all three protective compounds at low concentrations ameliorated atorvastatin-induced mitochondrial dysfunction with the increase of SDH activity, improvement of mitochondrial swelling, MMP collapse and mitochondrial GSH, and reduction of ROS formation. We can conclude that hesperidin, vanillic acid, and sinapic acid can directly reverse the toxic of atorvastatin in rat pancreas isolated mitochondria, which may be beneficial for protection against diabetogenic-induced mitochondrial dysfunction in pancreatic ß-cells.


Assuntos
Atorvastatina , Ácidos Cumáricos , Hesperidina , Potencial da Membrana Mitocondrial , Mitocôndrias , Dilatação Mitocondrial , Pâncreas , Espécies Reativas de Oxigênio , Ácido Vanílico , Animais , Atorvastatina/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/metabolismo , Ácidos Cumáricos/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Dilatação Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ácido Vanílico/farmacologia , Hesperidina/farmacologia , Glutationa/metabolismo , Ratos Wistar , Succinato Desidrogenase/metabolismo , Malondialdeído/metabolismo
3.
J Biochem Mol Toxicol ; 37(2): e23256, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36419121

RESUMO

It has been suggested that cytarabine (Ara-C) induces toxicity via mitochondrial dysfunction and oxidative stress. Therefore, we hypothesized that mitochondrial protective agents and antioxidants can reduce cytarabine-induced neurotoxicity. For this purpose, 48 male Wistar rats were assigned into eight equal groups include control group, Ara-C (70 mg/kg, i.p.) group, Ara-C plus betanin (25 mg/kg, i.p.) group, Ara-C plus vitamin D (500 U/kg, i.p.) group, Ara-C plus thymoquinone (0.5 mg/kg, i.p.) group, betanin group, vitamin group, and thymoquinone group. The activity of acetylcholinesterase (AChE), and butyrylcholinesterase (BChE), the concentrations of antioxidants (reduced glutathione and oxidized glutathione), oxidative stress (malondialdehyde) biomarkers, mitochondrial toxicity parameters as well as histopathological alteration in brain tissues were measured. Our results demonstrated that Ara-C exposure significantly declines the brain enzymes activity (AChE and BChE), levels of antioxidant biomarkers (GSH), and mitochondrial functions, but markedly elevate the levels of oxidative stress biomarkers (MDA) and mitochondrial toxicity. Almost all of the previously mentioned parameters (especially mitochondrial toxicity) were retrieved by betanin, vitamin D, and thymoquinone compared to Ara-C group. These findings conclusively indicate that betanin, vitamin D, and thymoquinone administration provide adequate protection against Ara-C-induced neurotoxicity through modulations of oxidative, antioxidant activities, and mitochondrial protective (mitoprotective) effects.


Assuntos
Antioxidantes , Fármacos Neuroprotetores , Ratos , Animais , Masculino , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Citarabina/toxicidade , Citarabina/metabolismo , Vitamina D/farmacologia , Acetilcolinesterase/metabolismo , Betacianinas/farmacologia , Butirilcolinesterase/metabolismo , Estresse Oxidativo , Vitaminas/metabolismo , Vitaminas/farmacologia , Mitocôndrias/metabolismo , Encéfalo , Biomarcadores/metabolismo , Fármacos Neuroprotetores/farmacologia
4.
Drug Chem Toxicol ; : 1-9, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369581

RESUMO

Lithium is commonly used in the treatment of bipolar disorders (BD) and consumer electronics. It has been reported that lithium exposure is associated with mitochondrial dysfunction and oxidative stress in isolated cardiac mitochondria. Mitochondrial protection has a key role in myocardial tissue homeostasis, cardiomyocyte survival and inhibition of cardiotoxicity. Hesperidin as a flavanone and cardioprotective agent has shown high potential in antioxidant activity and restoration of mitochondrial dysfunction in different models. Therefore, we aimed to evaluate the ameliorative effects of hesperidin against lithium-induced mitochondrial toxicity in rat cardiac mitochondria. Isolated mitochondria were classified into six groups; control, lithium carbonate (125 µM), three groups of lithium + hesperidin-treated received lithium (125 µM) and hesperidin with various concentrations (10, 50, and 100 µM) and hesperidin (100 µM). Succinate dehydrogenases (SDH) activity, mitochondrial swelling, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), mitochondrial glutathione (GSH) and lipid peroxidation (LPO) were measured. The mitochondria received lithium showed a significant reduction of SDH activity, MMP collapse, mitochondrial swelling, induction of ROS formation and lipid peroxidation. However, we observed that the administration of hesperidin (50 and 100 µM) resulted in the increase of SDH activity, improved MMP collapse, mitochondrial swelling, and reduced ROS formation and lipid peroxidation. Also, there were no obvious changes in cardiac mitochondria received of hesperidin. These findings suggest that hesperidin could reduce lithium-induced mitochondrial dysfunction through antioxidant activities in cardiac mitochondria, may be beneficial for prevention and treatment of lithium toxicities, either as a drug to treat BD or as an environmental pollutant.

5.
Toxicol Ind Health ; 39(10): 594-602, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37593903

RESUMO

Most of the literature has focused on titanium dioxide (TiO2) nanoparticles (NPs) toxicity, showing the importance of oxidative stress, mitochondrial dysfunction, and cell death in TiO2-induced toxicity. For this purpose, in the current study, we investigated the protective role of antioxidant and mitochondrial/lysosomal protective agents to minimize TiO2 NPs-induced toxicity in human lymphocytes. Human lymphocytes were obtained from heathy individuals and treated with different concentrations (80, 160, and 320 µg/mL) of TiO2 NPs, and then human lymphocytes preincubated with butylated hydroxytoluene (BHT), cyclosporin A (CsA), and chloroquine separately were exposed to TiO2 NPs for 6 h. In all the above-mentioned treated groups, adverse parameters such as cytotoxicity, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), lysosomal membrane destabilization, the levels of malondialdehyde (MDA), and glutathione (GSH) were measured. The results showed that TiO2 nanoparticles induced cytotoxicity through ROS formation, MMP collapse, lysosomal damages, depletion of GSH, and lipid peroxidation. However, BHT as an antioxidant, CsA as a mitochondrial permeability transition (MPT) pore sealing agent, and chloroquine as a lysosomotropic agent, significantly inhibited all the TiO2 NPs-induced cellular and organelle toxicities. Thus, it seems that antioxidant and mitochondrial/lysosomal protective agents are promising preventive strategies against TiO2 NPs-induced toxicity.


Assuntos
Antioxidantes , Nanopartículas , Humanos , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Substâncias Protetoras , Lisossomos , Mitocôndrias , Glutationa , Cloroquina/toxicidade , Linfócitos , Nanopartículas/toxicidade
6.
J Biochem Mol Toxicol ; 36(1): e22934, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34668290

RESUMO

In spite of the cardiotoxic effect of selective cyclooxygenase-2 inhibitors, they are most widely used as anti-inflammatory and analgesic drugs. Today, valdecoxib and rofecoxib have been withdrawn in the market but celecoxib remains. In this study, we focused on an analysis of celecoxib toxic effects on isolated mitochondria. Isolated rat heart mitochondria were obtained using differential centrifugation. Using flow cytometry and biochemical assays, we searched succinate dehydrogenases, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) formation, mitochondrial swelling, ATP/ADP ratio, lipid peroxidation, and mitochondrial complexes activity in rat heart isolated mitochondria. Herein, our results indicated a significant decrease in the activity of complex IV after exposure with celecoxib (16 µg/ml). This decrease in the activity of complex IV is paralleled by the MMP collapse, ROS formation, mitochondrial swelling, depletion of ATP, and lipid peroxidation. For the first time, this introductory study has shown a significant decrease in the activity of complex IV and mitochondrial dysfunction after exposure with celecoxib in rat heart isolated mitochondria.


Assuntos
Cardiotoxicidade/metabolismo , Celecoxib/farmacologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Masculino , Ratos , Ratos Wistar
7.
J Biochem Mol Toxicol ; 36(7): e23076, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35411685

RESUMO

Mitochondrial dysfunction and oxidative stress are identified to contribute to the mechanisms responsible for the pathogenesis of Alzheimer's disease (AD). Scopolamine (SCO) as a potent drug for inducing memory and learning impairment is associated with mitochondrial dysfunction and oxidative stress. In AD clinical trials molecules with antioxidant properties have shown modest benefit. Betanin as a multifunctional molecule with powerful antioxidative properties may be effective in the treatment of neurodegenerative. Hence, this study was designed to investigate the possible therapeutic effect of betanin against SCO-induced AD on Wistar rats. SCO (1 mg/kg) was administrated intraperitoneally to induce the AD in Wistar rats. The rats were treated with betanin doses (25 mg/kg and 50 mg/kg) intraperitoneally for 9 consecutive days. At the end of the 9th day, the animals were subjected to behavioral examination such as novel object recognition and passive avoidance tests and killed to study the mitochondrial and histological parameters. The results showed attenuation of SCO-induced memory and learning impairment by betanin at 50 mg/kg dose. Also, mitochondrial toxicity parameters such as mitochondrial membrane potential collapse, mitochondrial swelling, decreased activity of succinate dehydrogenase, and reactive oxygen species (ROS) production were reversed by betanin (50 mg/kg) compared to the SCO group. In addition, the ameliorative effect of betanin against SCO was demonstrated in histopathological results of hippocampus. The present investigation established that the betanin ameliorates the SCO-induced memory impairments, tissue injuries, and mitochondrial dysfunction by reducing mitochondrial ROS, which may be due to the potent antioxidant action of betanin.


Assuntos
Doença de Alzheimer , Escopolamina , Doença de Alzheimer/metabolismo , Animais , Antioxidantes , Betacianinas/farmacologia , Mitocôndrias/metabolismo , Estresse Oxidativo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Escopolamina/metabolismo , Escopolamina/toxicidade
8.
Pestic Biochem Physiol ; 184: 105117, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35715056

RESUMO

Previous studies have demonstrated that phosphine gas (PH3) released from aluminium phosphide (AlP) can inhibit cytochrome oxidase in cardiac mitochondria and induce generation of free radicals, oxidative stress, alteration in antioxidant defense system and cardiotoxicity. Available evidence suggests that cannabinoids have protective effects in the reduction of oxidative stress, mitochondrial and cardiovascular damages. The objective of this study was to evaluate the effect of trans-Δ-9-tetrahydrocannabinol (THC) on AlP-induced toxicity in isolated cardiomyocytes and cardiac mitochondria. Rat heart isolated cardiomyocytes and mitochondria were cotreated with different concentrations of THC (10, 50 and 100 µM) and IC50 of AlP, then cellular and mitochondrial toxicity parameters were assayed. Treatment with AlP alone increased the cytotoxicity, depletion of cellular glutathione (GSH), mitochondrial reactive oxygen species (ROS) generation, lipid oxidation, mitochondria membrane potential (ΔΨm) collapse and mitochondrial swelling, when compared to control group. However, incubation with THC (10, 50 and 100 µM) attenuated the AlP-induced changes in all these parameters in a THC concentration-dependent manner. Interestingly, the obtained results showed remarkably significant protective effects of THC by attenuation the different parameters of cytotoxicity, mitochondrial toxicity and oxidative stress induced by ALP in isolated cardiomyocytes and cardiac mitochondria. It is the first report showing the protective effects of THC against AlP-induced toxicity, and these effects are related to antioxidant potential and inhibition of mitochondria permeability transition (MPT) pore. Based on these results, it was hypothesized that THC may be used as a potential therapeutic agent for the treatment of AlP-induced mitochondrial dysfunction and cardiotoxicity.


Assuntos
Antioxidantes , Poro de Transição de Permeabilidade Mitocondrial , Compostos de Alumínio , Animais , Antioxidantes/farmacologia , Cardiotoxicidade , Dronabinol/farmacologia , Glutationa/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias , Estresse Oxidativo , Fosfinas , Ratos , Espécies Reativas de Oxigênio
9.
Drug Chem Toxicol ; 45(6): 2454-2462, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34304650

RESUMO

Benzene exposure results in bone marrow suppression, leading to a decrease in the number of circulating white blood cells, an increased risk of chronic lymphocytic leukemia, acute myeloid leukemia and aplastic anemia. Since the mechanism of induction of benzene toxicity is due to active metabolites through cytochrome p450 enzymes and production of reactive oxygen species (ROS), we hypothesized that natural compound such linalool with anti-inflammatory/antioxidant properties could be effective in reducing its toxicity. Lymphocytes isolated from healthy individuals were simultaneously cotreated with different concentrations of LIN (10, 25 and 50 µM) and benzene (50 µM) for 4 h at 37 °C. After incubation, the toxicity parameters such cytotoxicity, ROS formation, lysosomal membrane integrity, mitochondria membrane potential (ΔΨm) collapse, oxidized/reduced glutathione (GSH/GSSG) and malondialdehyde (MDA) were analyzed using biochemical and flow cytometry evaluations. Our data showed that benzene (50 µM) induced a significant increase in cytotoxicity, ROS formation, mitochondrial membrane potential (MMP) collapse, lipid peroxidation and oxidative stress while LIN with antioxidant potential reversed the toxic effects of benzene on isolated human lymphocytes. Our results suggest that LIN reduces and reverses benzene-induced cytotoxicity, oxidative stress and lysosomal/mitochondrial damages in human lymphocyte. This study demonstrated that cotreatment of LIN with benzene can reduce several parameters indicative of oxidative stress. As such, LIN could represent a potential therapeutic agent in reducing certain aspects of benzene-induced toxicity.


Assuntos
Antioxidantes , Benzeno , Humanos , Espécies Reativas de Oxigênio/metabolismo , Benzeno/toxicidade , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Estresse Oxidativo , Peroxidação de Lipídeos , Lisossomos , Glutationa/metabolismo , Linfócitos , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial
10.
Drug Chem Toxicol ; 45(4): 1625-1633, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33222529

RESUMO

Clozapine (CLZ) as an antipsychotic agent is very effective in treating of psychosis disorders and resistant schizophrenia, but the risk of severe cardiac toxicity effects restricts its clinical use. There are several interrelated hypotheses to explain clozapine-induced cardiotoxicity which all of them may be related to oxidative stress. Therefore, the current study investigated the harmful effects of clozapine on cardiomyocytes and assessed the cytoprotective effect of ellagic acid (EA). Freshly isolated adult rat ventricular cardiomyocytes were incubated for 4 h at 37 °C with 00.05% ethanol as control, CLZ (50 µM), CLZ (50 µM) + a series of EA concentrations (10, 20 and 50 µM) and EA (50 µM). To evaluate the protective effect of EA, the markers of cell viability, reactive oxygen species (ROS) formation, mitochondria membrane potential (ΔΨm) collapse, lysosomal membrane integrity, malondialdehyde (MDA) and oxidized/reduced glutathione (GSH/GSSG) content were checked by biochemical and flowcytometry techniques. Our results demonstrated that EA (10, 20 and 50 µM) effectively inhibited CLZ-induced cytotoxicity which is associated with ROS overproduction and amelioration of mitochondrial and lysosomal damages. In addition, EA (10, 20 and 50 µM) in the presence of CLZ reduced the production of MDA as a specific marker lipid peroxidation and GSSG. Collectively, these findings suggested that EA protects cardiomyocytes from oxidative injury through inhibiting ROS formation, mitochondria dysfunction, and lysosomal damages, which suggest a potential therapeutic strategy of EA for CLZ-induced oxidative stress and cardiotoxicity.


Assuntos
Clozapina , Ácido Elágico , Mitocôndrias , Miócitos Cardíacos , Estresse Oxidativo , Animais , Cardiotoxicidade , Clozapina/toxicidade , Ácido Elágico/farmacologia , Dissulfeto de Glutationa/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Espécies Reativas de Oxigênio/metabolismo
11.
Drug Chem Toxicol ; 45(3): 1150-1157, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32885679

RESUMO

Oxidative stress and mitochondrial dysfunction have been associated with valproic acid (VPA) induced neurotoxicity. Mitochondria are vulnerable to oxidative damage and are also a major source of superoxide free radicals. Therefore, the need for mitochondrial protective and antioxidant agents for reducing valporic acid toxicity in central nerve system (CNS) is essential. In the present study, we investigated the potential beneficial effects of sodium selenite (SS) and L-carnitine (LC) against valproic acid -induced oxidative stress and mitochondrial dysfunction in isolated rat cortical neurons. Valproic acid (50, 100 and 200 µM) treatment caused a significant decrease in cellular viability, which was accompanied by increases in reactive oxygen species (ROS) generation, GSSG and GSH content, lipid peroxidation and lysosomal and mitochondrial damages. Sodium selenite (1 µM) and L-carnitine (1 mM) pretreatment attenuated valproic acid-induced decrease in cell viability. In addition, sodium selenite (1 µM) and L-carnitine (1 mM) pretreatment significantly protected against valproic acid-induced raise in oxidative stress, mitochondrial and lysosomal dysfunction, lipid peroxidation levels and depletion of GSH content. Our results in the current study provided insights into the protective mechanism by L-carnitine and sodium selenite, which is liked, to neuronal ROS generation and mitochondrial and lysosomal damages.


Assuntos
Selênio , Ácido Valproico , Animais , Carnitina/farmacologia , Neurônios , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio , Selênio/farmacologia , Selenito de Sódio/farmacologia , Ácido Valproico/toxicidade
12.
Drug Chem Toxicol ; 45(1): 456-463, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31973585

RESUMO

Drug-induced cardiotoxicity usually manifests as heart failure or left ventricular systolic dysfunction. Left ventricular dysfunction is a rarely reported side effect of bevacizumab (BEV) with an incidence of 1.2%, and this occurs irrespective of the route of administration. In this study, we focused on an analysis of BEV effects on mitochondrial complexes activities and protective effect of ellagic acid (EA) against BEV-induced mitochondria toxicity. Rat heart mitochondria were isolated using differential centrifugation form wistar rats. Using biochemical and flowcytometry assays we evaluated mitochondrial complexes activity, succinate dehydrogenases (SDH), mitochondrial swelling, reactive oxygen species (ROS) formation and mitochondrial membrane potential (MMP) in isolated mitochondria. We observed only decreased activity of complexes II after exposure with BEV (50 and 100 µg/ml). The inhibition of complex II is paralleled by the decreased MMP, mitochondrial swelling, and ROS formation. Also, we showed that EA (10-100 µM) as an antioxidant and natural agent significantly decreases mitochondrial toxicity induced by BEV. Together, for the first time, this preliminary study has demonstrated a significant decrease in activity of complexes II after exposure with BEV and proved the protective effects of EA in alleviating BEV-mediated mitochondria toxicity.


Assuntos
Ácido Elágico , Mitocôndrias Cardíacas , Animais , Anticorpos Monoclonais , Bevacizumab , Ácido Elágico/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio
13.
Drug Chem Toxicol ; 45(3): 963-971, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32657163

RESUMO

The aim of the current study is to determine the protective and therapeutic effects of linalool against carbon tetrachloride (CCl4)-induced hepatoxicity and nephrotoxicity. Six-week-old male Wistar rats were divided into five groups: Control group (a regular diet); CCl4 group (1 ml/kg dissolved in olive oil, intraperitoneally at 14th day); pretreatment group (25 mg/kg linalool daily + CCl4 14thday); post-treatment group (25 mg/kg linalool 2, 6, 24, and 48 h after the injection of CCl4 at 14th day); and linalool group (25 mg/kg linalool daily, orally). All animals were sacrificed, tissue and blood samples were collected to analysis. Administration of CCl4 resulted in a marked increase in hepatic (aspartate aminotransferase, alanine transaminase, and alkaline phosphatase) and renal (blood urea nitrogen and creatinine) markers. Also, CCl4 resulted in pathological damages, a significant increase in the concentration of malondialdehyde , tumor necrosis factor-alpha, and Interleukin 6 , expression of nuclear factor kappa-light-chain-enhancer of activated B cells and a significant decrease in the levels of serum total protein, serum albumin, and antioxidants. However, in pretreatment and post treatment groups, linalool significantly inhibited CCl4- induced hepatic and nephric damages. These results demonstrate that linalool has protective and therapeutic effects in an in vitro model of CCL4-induced hepatic and nephric damage, proposing linalool as a potential therapeutic agent against chemical and drug induced hepatotoxicity and nephrotoxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Extratos Vegetais , Monoterpenos Acíclicos , Alanina Transaminase , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado , Masculino , Estresse Oxidativo , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
14.
Toxicol Ind Health ; 38(2): 100-111, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35225099

RESUMO

Polyvinyl chloride (PVC) microplastics are emerging contaminants affecting biological wastewater treatment processes. So far, the toxicological investigation of PVC microplastics usually focused on the anaerobic and denitrifying bacteria. It seems that the primary lymphocytes isolated from peripheral blood are more sensitive than most other organ cell types in vitro; therefore, the aim of this study was to assess the cytotoxicity of PVC microplastic on human and fish blood lymphocytes as a useful ex vivo model for accelerated human toxicity studies. Using biochemical analyses, we showed human lymphocytes are more sensitive to toxic effects of PVC microplastic than fish lymphocytes. Our result showed that addition of PVC microplastic at 24, 48, and 96 µg/ml for 3 h to human blood lymphocytes induced cytotoxicity. The PVC microplastic-induced cytotoxicity on human blood lymphocytes was associated with intracellular reactive oxygen species (ROS) formation, lysosomal membrane injury, mitochondrial membrane potential (MMP) collapse, depletion of glutathione, and lipid peroxidation. According to our results, PVC microplastic particles induce oxidative stress and organelle damage in human lymphocytes, while these significant alterations in toxicity parameters in PVC microplastic-treated fish lymphocytes were not observed. Finally, our findings suggest that human lymphocytes are more sensitive to PVC microplastic toxicity compared with fish lymphocytes.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Peroxidação de Lipídeos , Linfócitos , Microplásticos/toxicidade , Plásticos , Cloreto de Polivinila/toxicidade , Poluentes Químicos da Água/toxicidade
15.
Toxicol Mech Methods ; 32(2): 106-113, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34431445

RESUMO

Mitochondria have the main roles in myocardial tissue homeostasis, through providing ATP for the vital enzymes in intermediate metabolism, contractile apparatus and maintaining ion homeostasis. Mitochondria-related cardiotoxicity results from the exposure with illicit drugs have previously reported. These illicit drugs interference with processes of normal mitochondrial homeostasis and lead to mitochondrial dysfunction and mitochondrial-related oxidative stress. Cannabis consumption has been shown to cause ventricular tachycardia, to increase the risk of myocardial infarction (MI) and potentially sudden death. Here, we investigated this hypothesis that delta-9-tetrahydrocannabinol (Delta-9-THC) as a main cannabinoid found in cannabis could directly cause mitochondrial dysfunction. Cardiac mitochondria were isolated with mechanical lysis and differential centrifugation form rat heart. The isolated cardiac mitochondria were treated with different concentrations of THC (1, 5, 10, 50, 100 and 500 µM) for 1 hour at 37 °C. Then, succinate dehydrogenase (SDH) activity, mitochondrial swelling, reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP) collapse and lipid peroxidation were measured in the treated and nontreated isolated cardiac mitochondria. Our observation showed that THC did not cause a deleterious alteration in mitochondrial functions, ROS production, MMP collapse, mitochondrial swelling, oxidative stress and lipid peroxidation in used concentrations (5-100 µM), even in several tests, toxicity showed a decreasing trend. Altogether, the results of the current study showed that THC is not directly toxic in isolated cardiac mitochondria, and even may be helpful in reducing mitochondrial toxicity.


Assuntos
Dronabinol , Mitocôndrias Cardíacas , Animais , Dronabinol/metabolismo , Dronabinol/toxicidade , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/metabolismo , Dilatação Mitocondrial , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo
16.
Nutr Cancer ; 73(11-12): 2460-2468, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33030061

RESUMO

Introduction Hepatocellular carcinoma (HCC) is one of the deadliest and most common cancers in humans worldwide. Today, common treatment options for HCC are not effective. The synergistic relationship between compounds of natural origin and the drugs used in the treatment of cancer has been described. Ellagic acid (EA) as a compound of natural origin induces cell death in various cancer cell lines. Aim: The aim of this study was to investigate the effects of the alone or combination of EA and sorafenib (SOR) on HCC hepatocytes viability and apoptosis signaling both in vitro and in vivo. Methods: The synergistic effects of EA and SOR were tested in an HCC rat model. This was followed by cellular and mitochondrial parameters. Results: Results showed that SOR and EA applied alone or in combination increased the reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and cytochrome c release in the mitochondria only from the HCC hepatocytes group. Furthermore, SOR and EA applied alone or in combination increased the caspase-3 activity and decreased the hepatocyte viability only on the HCC group. Conclusions: We showed for the first time that EA and SOR are effective on the HCC rat model through mitochondria and hepatocytes targeting.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Antineoplásicos/uso terapêutico , Apoptose , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Ácido Elágico/metabolismo , Hepatócitos , Neoplasias Hepáticas/patologia , Mitocôndrias , Ratos , Sorafenibe/farmacologia
17.
Nutr Cancer ; 73(3): 450-459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32420763

RESUMO

Recent studies revealed an antioxidant activity and anticancer efficiency of betanin. In this study, we investigated the cytotoxic effects and the possible mechanisms of betanin-induced apoptosis against U87MG human glioma cells and compared the results to those of human normal lymphocytes. MTT assay, caspase-3 activation assays in cells and succinate dehydrogenases (SDH), mitochondrial swelling, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and cytochrome C release assays in isolated mitochondria were obtained from U87MG human glioma cells and noncancerous human lymphocytes The results illustrated the significant cytotoxic effect of betanin on U87MG human glioma cells, with a concentration value that inhibits 50% of the cell growth of 7 µg/ml after 12 h of treatment. MTT assay demonstrated that the betanin is selectively toxic to U87MG human glioma cells, and betanin induced cell apoptosis via activation of caspase-3 along with modulation of apoptosis-related mitochondria. Meanwhile, betanin selectively increased ROS formation, mitochondria swelling, MMP decrease, and cytochrome c release in cancerous mitochondria but in normal mitochondria. Based on the evidence obtained from this study, it is concluded that the betanin is a promising natural compound to fight U87MG human glioma cells via induction of apoptosis through activation of intrinsic pathways.


Assuntos
Betacianinas , Glioma , Apoptose , Betacianinas/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Humanos , Linfócitos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Pestic Biochem Physiol ; 176: 104883, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119212

RESUMO

These days, poisoning with aluminium phosphide (AlP), is one of the main health threats in human societies. Previous studies have been reported that cardiotoxicity induced by AlP, via mitochondrial dysfunction and oxidative stress is the main cause of death in victims. On the other, collectively, multiple lines of evidence strongly suggest that calcitriol has mitochondrial protective and antioxidant effects. Therefore, we assumed that calcitriol could presumably ameliorate AlP-induced oxidative stress and mitochondrial dysfunction in cardiomyocytes. Mitochondria and cardiomyocytes were isolated by differential centrifugation and collagenase perfusion respectively from rat heart. The isolated cardiomyocytes and mitochondria were cotreated with different concentrations of calcitriol (0.2, 0.4 and 1 µg/ml) and AlP (20 µg/ml) for 3 h. The parameters of cellular toxicity including; cytotoxicity, reactive oxygen species (ROS) formation, malondialdehyde (MDA) level, mitochondria membrane potential (ΔΨm) collapse, lysosomal membrane integrity, the level of oxidized and reduced glutathione (GSH and GSSG), and mitochondrial toxicity parameters including; succinate dehydrogenase (SDH) activity and mitochondrial swelling were analyzed using biochemical and flow cytometric evaluations. Administration of AlP significantly increased cytotoxicity, GSH depletion, cellular ROS formation, MDA level, mitochondrial and lysosomal dysfunction in isolated cardiomyocytes. In isolated mitochondria, AlP decreased SDH activity and mitochondrial swelling. The cotreatment of isolated cardiomyocytes and mitochondria with calcitriol (0.4 and 1 µg/ml) and AlP (20 µg/ml) showed the ability to reduce the toxic effects of AlP. These findings suggest a potential therapeutic role of calcitriol in protecting cardiomyocytes and cardiac mitochondria from oxidative damage induced by AlP. According to the results, calcitriol exerted ameliorative effects against AlP-induced cytotoxicity and mitochondrial toxicity, and the effect was attributed to the antioxidant properties.


Assuntos
Calcitriol , Miócitos Cardíacos , Compostos de Alumínio , Animais , Calcitriol/farmacologia , Potencial da Membrana Mitocondrial , Mitocôndrias , Estresse Oxidativo , Fosfinas , Ratos , Espécies Reativas de Oxigênio
19.
Drug Dev Res ; 82(6): 835-843, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33442898

RESUMO

Clozapine (CLZ) is unusually efficient in psychotic diseases. Nonetheless, its use is confined due to potentially life-threatening adverse events, including cardiotoxicity. Since the cardiotoxicity of CLZ is mediated through the generation of active metabolites, free radical, and inflammation. Here, we tested this hypothesis that kaempferol (KP) as antioxidant and anti-inflammatory agent could attenuate CLZ-induced mitochondrial/lysosomal and oxidative damages in rat ventricular cardiomyocytes. Rat ventricular cardiomyocytes were isolated by collagenase perfusion. Then isolated cardiomyocytes were simultaneously treated with different concentrations of KP (10, 20, and 50 µM) and CLZ (50 µM) for 4 h at 37°C. After 4 h of incubation, using by flow cytometry and biochemical evaluations, the parameters of cellular toxicity including: cell viability, reactive oxygen species (ROS) formation, mitochondria membrane potential (ΔΨm) collapse, lysosomal membrane integrity, malondialdehyde, and oxidized/reduced glutathione were analyzed. The results showed that CLZ (50 µM) induced a significant increase in cytotoxicity, ROS formation, mitochondrial membrane potential collapse, lipid peroxidation, and oxidative stress while KP reverted the above toxic effect of CLZ on isolated cardiomyocytes. Our data suggest that KP prevents and reverses CLZ-induced oxidative and mitochondrial/lysosomal damages in isolated cardiomyocytes, providing an experimental basis for clinical treatment on CLZ-induced cardiotoxicity.


Assuntos
Clozapina , Miócitos Cardíacos , Animais , Clozapina/farmacologia , Quempferóis/farmacologia , Potencial da Membrana Mitocondrial , Mitocôndrias , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo
20.
Cancer Invest ; 38(8-9): 463-475, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32772580

RESUMO

In the present study, we searched selective cytotoxicity and mitochondria mediated apoptosis of novel COX-2 inhibitor 2-(4-(Methylsulfonyl)phenyl)imidazo[1,2-a] pyridine-8-carboxylic acid on B-lymphocytes and their mitochondria isolated from normal subjects and acute lymphoblastic leukemia (ALL) patients' blood. Our results showed this compound can selectively induce cellular and mitochondrial toxicity on ALL B-lymphocytes and mitochondria without any toxic effects on normal B-lymphocytes and their mitochondria. Taken together, the results of this study suggest that cancerous mitochondria are a potential target for the ALL B-lymphocytes. Selective toxicity of COX-2 inhibitor in cancerous mitochondria could be an attractive therapeutic option for the effective clinical management of therapy-resistant ALL.


Assuntos
Linfócitos B/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Mitocôndrias/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linfócitos B/patologia , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Criança , Pré-Escolar , Citocromos c/metabolismo , Feminino , Humanos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA