Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Commun ; 15(1): 5376, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918409

RESUMO

Kagome lattice has been actively studied for the possible realization of frustration-induced two-dimensional flat bands and a number of correlation-induced phases. Currently, the search for kagome systems with a nearly dispersionless flat band close to the Fermi level is ongoing. Here, by combining theoretical and experimental tools, we present Sc3Mn3Al7Si5 as a novel realization of correlation-induced almost-flat bands in the kagome lattice in the vicinity of the Fermi level. Our magnetic susceptibility, 27Al nuclear magnetic resonance, transport, and optical conductivity measurements provide signatures of a correlated metallic phase with tantalizing ferromagnetic instability. Our dynamical mean-field calculations suggest that such ferromagnetic instability observed originates from the formation of nearly flat dispersions close to the Fermi level, where electron correlations induce strong orbital-selective renormalization and manifestation of the kagome-frustrated bands. In addition, a significant negative magnetoresistance signal is observed, which can be attributed to the suppression of flat-band-induced ferromagnetic fluctuation, which further supports the formation of flat bands in this compound. These findings broaden a new prospect to harness correlated topological phases via multiorbital correlations in 3d-based kagome systems.

2.
Sci Adv ; 10(27): eadn8694, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968350

RESUMO

Layered honeycomb cobaltates are predicted as promising for realizing the Kitaev quantum spin liquid, a many-body quantum entangled ground state characterized by fractional excitations. However, they exhibit antiferromagnetic ordering at low temperatures, hindering the expected quantum state. We demonstrate that controlling the trigonal distortion of CoO6 octahedra is crucial to suppress antiferromagnetic order through enhancing frustration in layered honeycomb cobaltates. Using heterostructure engineering on Cu3Co2SbO6 thin films, we adjust the trigonal distortion of CoO6 octahedra and the resulting trigonal crystal field. The original Néel temperature of 16 kelvin in bulk Cu3Co2SbO6 decreases (increases) to 7.8 kelvin (22.7 kelvin) in strained Cu3Co2SbO6 films by decreasing (increasing) the magnitude of the trigonal crystal fields. The first-principles calculation suggests the enhancement of geometrical frustration as the origin of the suppression of antiferromagnetism. This finding supports the potential of layered honeycomb cobaltate heterostructures and strain engineering in realizing extremely elusive quantum phases of matter.

3.
RNA Biol ; 10(8): 1283-90, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23823647

RESUMO

MicroRNAs and AU Rich element (ARE)-mediated degradation of transcripts are thought to be two independent means of gene regulation at the post-transcriptional level. However, since their site of action is the same (3'UTR of mRNA), there exists a high probability that specific miRNAs may bind to AREs and, thus, interact with ARE-binding proteins (ARE-BPs) to regulate transcript levels. In this study, we have characterized AREs as potential targets of hsa-miR-3134. An analysis of the global gene expression profile of breast cancer cell line MCF7 overexpressing miR-3134 revealed the presence of at least one AUUUA element in the 3'-UTRs of 63% of miR-3134 regulated protein coding genes. Quantitative RT-PCR or 3'UTR luciferase assays show that miR-3134 mediates an up to 4-8-fold increase in the levels of ARE bearing transcripts-SOX9, VEGFA, and EGFR, while mutated miR-3134 shows a decreased effect. The miR-3134-mediated increase in transcript levels was unaffected by treatment with transcription inhibitor (actinomycin D), indicating that miR-3134 enhances transcript stability. To investigate a possible interplay between miR-3134 and a prototype ARE-BP, HuR, we compared their overexpression transcriptome profiles. Interestingly, up to 80% of miR-3134-regulated genes were also regulated by HuR. Overexpression studies of HuR alone or in combination with miR-3134 shows that wt miR-3134 but not a mutated miR-3134 promotes stabilization of HuR-regulated transcripts SOX9, VEGFA, and EGFR as confirmed by qRT-PCR or RNA-immunoprecipitation experiments. Overall, this report suggests that collaboration between ARE-binding microRNAs and ARE-binding proteins could be a general mechanism of 3'-UTR mediated regulation of gene expression in human cells.


Assuntos
Elementos Ricos em Adenilato e Uridilato , Proteínas ELAV/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma/fisiologia , Regiões 3' não Traduzidas , Dactinomicina/farmacologia , Proteínas ELAV/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transcriptoma/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
4.
Nanomaterials (Basel) ; 14(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38202464

RESUMO

Layered honeycomb magnets with strong atomic spin-orbit coupling at transition metal sites have been intensively studied for the search of Kitaev magnetism and the resulting non-Abelian braiding statistics. α-RuCl3 has been the most promising candidate, and there have been several reports on the realization of sibling compounds α-RuBr3 and α-RuI3 with the same crystal structure. Here, we investigate correlated electronic structures of α-RuCl3 and α-RuI3 by employing first-principles dynamical mean-field theory. Our result provides a valuable insight into the discrepancy between experimental and theoretical reports on transport properties of α-RuI3, and suggests a potential realization of correlated flat bands with strong spin-orbit coupling and a quantum spin-Hall insulating phase in α-RuI3.

5.
Plant Mol Biol ; 79(6): 555-68, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22644442

RESUMO

Salinity, one of the most deleterious stresses, affects growth and overall yield of crop plants. To identify new "candidate genes" having potential role in salinity tolerance, we have carried out 'functional screening' of a cDNA library (made from a salt tolerant rice-Pokkali). Based on this screening, we identified a cDNA clone that was allowing yeast cells to grow in the presence of 1.2 M NaCl. Sequencing and BLAST search identified it as mannose-1-phosphate guanyl transferase (OsMPG1) gene from rice. Analysis of rice genome sequence database indicated the presence of 3 additional genes for MPG. Out of four, three MPG genes viz. OsMPG1, 3 and 4 were able to functionally complement yeast MPG mutant -YDL055C. We have carried out detailed transcript profiling of all members of MPG family by qRT-PCR using two contrasting rice genotypes (IR64 and Pokkali) under different abiotic stresses (salinity, drought, oxidative stress, heat stress, cold or UV light). These MPG genes showed differential expression under various abiotic stresses with two genes (OsMPG1 and 3) showing high induction in response to multiple stresses. Analysis of rice microarray data indicated higher expression levels for OsMPG1 in specific tissues such as roots, leaves, shoot apical meristem and different stages of panicle and seed development, thereby indicating its developmental regulation. Functional validation of OsMPG1 carried out by overexpression in the transgenic tobacco revealed its involvement in enhancing salinity stress tolerance.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Nucleotidiltransferases/metabolismo , Oryza/enzimologia , Oryza/genética , Plantas Tolerantes a Sal , Estresse Fisiológico/efeitos dos fármacos , Adaptação Fisiológica , Sequência de Aminoácidos , Southern Blotting , DNA Complementar/genética , DNA de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Biblioteca Gênica , Genótipo , Dados de Sequência Molecular , Nucleotidiltransferases/genética , Oryza/efeitos dos fármacos , Filogenia , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/genética , Nicotiana/metabolismo , Leveduras
6.
Heliyon ; 5(12): e03050, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32382667

RESUMO

Phosphorylation of proteins on serine/threonine residues represents an important biochemical mechanism to regulate several cellular processes. Polo-like kinases (PLKs) are a family of serine-threonine kinases that play an imminent role in cell cycle regulation in yeast to humans, and thus an important therapeutic target for cancers. The present study provides insights into the enzymatic features of Saccharomyces cerevisiae PLK, Cdc5 using in vitro casein phosphorylation assays. The recombinant yeast PLK, GST-Cdc5 showed maximum casein phosphorylation activity at 30 °C, pH 9 and 45 min of incubation period. GST-Cdc5 exhibited a KM of 1.35 µM for casein, and high affinity for ATP, since addition of non-radioactive ATP chased out casein phosphorylation by radiolabeled ATP. The recombinant enzyme showed maximum kinase activity at 2.7 µM of GST-Cdc5. Casein was found to be the best in vitro substrate of GST-Cdc5 followed by BSA (Bovine Serum Albumin) and MBP (Myelin Basic Protein). Of the metal ions tested, Mg2+ (at 20 mM) was found to enhance GST-Cdc5 kinase activity, while Ca2+ (at 5 mM) and Mn2+ (at 10 mM) inhibited the same. The presence of EDTA, SDS and PMSF inhibited phosphorylation by GST-Cdc5, while DTT had no effect. The recombinant GST-Cdc5 can be used as a tool for deciphering PLKs' structure and functions, which are still at infancy.

7.
Methods Mol Biol ; 1629: 123-140, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28623583

RESUMO

The Mediator complex is a multi-protein complex that acts as a molecular bridge conveying transcriptional messages from the cis element-bound transcription factor to the RNA Polymerase II machinery. It is found in all eukaryotes including members of the plant kingdom. Increasing number of reports from plants regarding different Mediator subunits involved in a multitude of processes spanning from plant development to environmental interactions have firmly established it as a central hub of plant regulatory networks. Routine isolation of Mediator complex in a particular species is a necessity because of many reasons. First, composition of the Mediator complex varies from species to species. Second, the composition of the Mediator complex in a particular species is not static under all developmental and environmental conditions. Besides this, at times, Mediator complex is used in in vitro transcription systems. Rice, a staple food crop of the world, is used as a model monocot crop. Realizing the need of a reliable protocol for the isolation of Mediator complex from plants, we describe here the isolation of Mediator complex from rice.


Assuntos
Complexo Mediador/isolamento & purificação , Complexo Mediador/metabolismo , Oryza/metabolismo , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Imunoprecipitação , Espectrometria de Massas , Oryza/genética , Ligação Proteica , Subunidades Proteicas , RNA Polimerase II/metabolismo , Transdução de Sinais , Transcrição Gênica , Fluxo de Trabalho
8.
J Phys Condens Matter ; 28(37): 375501, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27419390

RESUMO

We have studied the electronic structure and magnetism of the spin chain compounds Ca3ZnMnO6 and Ca3ZnCoO6 using density functional theory with generalised gradient approximation (GGA). In agreement with experiment our calculations reveal that high spin (HS) state for Mn(4+) ion and low spin (LS) state for Co(4+) ion stabilize the magnetic structure of the respective compounds. The magnetic exchange paths, calculated using Nth order muffin-tin orbital downfolding method, shows dominant intra-chain exchange interaction between the magnetic ions (Mn, Co) is antiferromagnetic for Ca3ZnMnO6 and ferromagnetic for Ca3ZnCoO6. The magnetic order of both the compounds is in accordance with the Goodenough-Kanamori-Anderson rules and is consistent with the experimental results. Finally we have investigated the importance of spin-orbit coupling (SOC) in these compounds. While SOC practically has no effect for the Mn system, it is strong enough to favor the spin quantization along the chain direction for the Co system in the LS state.

9.
Front Plant Sci ; 6: 757, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442070

RESUMO

Basic transcriptional machinery in eukaryotes is assisted by a number of cofactors, which either increase or decrease the rate of transcription. Mediator complex is one such cofactor, and recently has drawn a lot of interest because of its integrative power to converge different signaling pathways before channeling the transcription instructions to the RNA polymerase II machinery. Like yeast and metazoans, plants do possess the Mediator complex across the kingdom, and its isolation and subunit analyses have been reported from the model plant, Arabidopsis. Genetic, and molecular analyses have unraveled important regulatory roles of Mediator subunits at every stage of plant life cycle starting from flowering to embryo and organ development, to even size determination. It also contributes immensely to the survival of plants against different environmental vagaries by the timely activation of its resistance mechanisms. Here, we have provided an overview of plant Mediator complex starting from its discovery to regulation of stoichiometry of its subunits. We have also reviewed involvement of different Mediator subunits in different processes and pathways including defense response pathways evoked by diverse biotic cues. Wherever possible, attempts have been made to provide mechanistic insight of Mediator's involvement in these processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA