Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Carcinogenesis ; 35(5): 1172-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24501327

RESUMO

The estrogen analog tamoxifen (TAM), used for adjuvant therapy of breast cancer, induces endometrial and uterine tumors in breast cancer patients. Proliferation stimulus of the uterine endometrium is likely involved in tumor induction, but genotoxicity may also play a role. Formation of TAM-DNA adducts in human tissues has been reported but remains controversial. To address this issue, we examined TAM-DNA adducts in uteri from two species of monkeys, Erythrocebus patas (patas) and Macaca fascicularis (macaque), and in human endometrium and myometrium. Monkeys were given 3-4 months of chronic TAM dosing scaled to be equivalent to the daily human dose. In the uteri, livers and brains from the patas (n = 3), and endometrium from the macaques (n = 4), TAM-DNA adducts were measurable by TAM-DNA chemiluminescence immunoassay. Average TAM-DNA adduct values for the patas uteri (23 adducts/10(8) nucleotides) were similar to those found in endometrium of the macaques (19 adducts/10(8) nucleotides). Endometrium of macaques exposed to both TAM and low-dose estradiol (n = 5) averaged 34 adducts/10(8) nucleotides. To examine TAM-DNA persistence in the patas, females (n = 3) were exposed to TAM for 3 months and to no drug for an additional month, resulting in low or non-detectable TAM-DNA in livers and uteri. Human endometrial and myometrial samples from women receiving (n = 8) and not receiving (n = 8) TAM therapy were also evaluated. Women receiving TAM therapy averaged 10.3 TAM-DNA adducts/10(8) nucleotides, whereas unexposed women showed no detectable TAM-DNA. The data indicate that genotoxicity, in addition to estrogen agonist effects, may contribute to TAM-induced human endometrial cancer.


Assuntos
Adutos de DNA/metabolismo , DNA/metabolismo , Tamoxifeno/metabolismo , Útero/metabolismo , Animais , DNA/química , Adutos de DNA/efeitos adversos , Adutos de DNA/química , Endométrio/metabolismo , Erythrocebus patas , Feminino , Humanos , Miométrio/metabolismo , Tamoxifeno/química
2.
Front Cell Dev Biol ; 11: 1215406, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492222

RESUMO

Introduction: The articulating ends of limb bones have precise morphology and asymmetry that ensures proper joint function. Growth differentiation factor 5 (Gdf5) is a secreted morphogen involved in cartilage and bone development that contributes to the architecture of developing joints. Dysregulation of Gdf5 results in joint dysmorphogenesis often leading to progressive joint degeneration or osteoarthritis (OA). The transcription factors and cis-regulatory modules (CRMs) that regulate Gdf5 expression are not well characterized. We previously identified a Gdf5-associated regulatory region (GARR) that contains predicted binding sites for Lmx1b, Osr2, Fox, and the Sox transcription factors. These transcription factors are recognized factors involved in joint morphogenesis and skeletal development. Methods: We used in situ hybridization to Gdf5, Col2A1, and the transcription factors of interest in developing chicken limbs to determine potential overlap in expression. We further analyzed scRNA-seq data derived from limbs and knees in published mouse and chicken datasets, identifying cells with coexpression of Gdf5 and the transcription factors of interest. We also performed site-directed mutatgenesis of the predicted transcription factor binding sites in a GARR-reporter construct and determined any change in activity using targeted regional electroporation (TREP) in micromass and embryonic chicken wing bioassays. Results: Gdf5 expression overlapped the expression of these transcription factors during joint development both by in situ hybridization (ISH) and scRNA-seq analyses. Within the GARR CRM, mutation of two binding sites common to Fox and Sox transcripstion factors reduced enhancer activity to background levels in micromass cultures and in ovo embryonic chicken wing bioassays, whereas mutation of two Sox-only binding sites caused a significant increase in activity. These results indicate that the Fox/Sox binding sites are required for activity, while the Sox-only sites are involved in repression of activity. Mutation of Lmx1b binding sites in GARR caused an overall reduction in enhancer activity in vitro and a dorsal reduction in ovo. Despite a recognized role for Osr2 in joint development, disruption of the predicted Osr2 site did not alter GARR activity. Conclusion: Taken together, our data indicates that GARR integrates positive, repressive, and asymmetrical inputs to fine-tune the expression of Gdf5 during elbow joint development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA