Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nature ; 629(8010): 127-135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658750

RESUMO

Phenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium-an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that the Emx2 locus experienced lineage-specific patterns of accelerated cis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show that Emx2 is a critical upstream regulator of patagium development. Moreover, we identify different cis-regulatory elements that may be responsible for driving increased Emx2 expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence that Emx2 expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation of Emx2 was altered by distinct cis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty.


Assuntos
Evolução Molecular , Proteínas de Homeodomínio , Locomoção , Marsupiais , Fatores de Transcrição , Animais , Feminino , Masculino , Camundongos , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Genômica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Locomoção/genética , Marsupiais/anatomia & histologia , Marsupiais/classificação , Marsupiais/genética , Marsupiais/crescimento & desenvolvimento , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fenótipo , Humanos
2.
Biol Lett ; 19(7): 20230174, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37433329

RESUMO

Adaptive thermal tolerance plasticity can dampen the negative effects of warming. However, our knowledge of tolerance plasticity is lacking for embryonic stages that are relatively immobile and may benefit the most from an adaptive plastic response. We tested for heat hardening capacity (a rapid increase in thermal tolerance that manifests in minutes to hours) in embryos of the lizard Anolis sagrei. We compared the survival of a lethal temperature exposure between embryos that either did (hardened) or did not (not hardened) receive a high but non-lethal temperature pre-treatment. We also measured heart rates (HRs) at common garden temperatures before and after heat exposures to assess metabolic consequences. 'Hardened' embryos had significantly greater survival after lethal heat exposure relative to 'not hardened' embryos. That said, heat pre-treatment led to a subsequent increase in embryo HR that did not occur in embryos that did not receive pre-treatment, indicative of an energetic cost of mounting the heat hardening response. Our results are not only consistent with adaptive thermal tolerance plasticity in these embryos (greater heat survival after heat exposure), but also highlight associated costs. Thermal tolerance plasticity may be an important mechanism by which embryos respond to warming that warrants greater consideration.


Assuntos
Temperatura Alta , Lagartos , Animais , Temperatura , Adaptação Fisiológica , Frequência Cardíaca
3.
Evol Dev ; 23(4): 320-332, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33848387

RESUMO

Humans are changing and challenging nature in many ways. Conservation Biology seeks to limit human impacts on nature and preserve biological diversity. Traditionally, Developmental Biology and Conservation Biology have had nonoverlapping objectives, operating in distinct spheres of biological science. However, this chasm can and should be filled to help combat the emerging challenges of the 21st century. The means by which to accomplish this goal were already established within the conceptual framework of evo- and eco-devo and can be further expanded to address the ways that anthropogenic disturbance affect embryonic development. Herein, I describe ways that these approaches can be used to advance the study of reptilian embryos. More specifically, I explore the ways that a developmental perspective can advance ongoing studies of embryonic physiology in the context of global warming and chemical pollution, both of which are known stressors of reptilian embryos. I emphasize ways that these developmental perspectives can inform conservation biologists trying to develop management practices that will address the complexity of challenges facing reptilian embryos.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Animais , Efeitos Antropogênicos
4.
Proc Biol Sci ; 288(1953): 20210650, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34130507

RESUMO

Among the most specialized integumentary outgrowths in amniotes are the adhesive, scale-like scansors and lamellae on the digits of anoles and geckos. Less well-known are adhesive tail pads exhibited by 21 gecko genera. While described over 120 years ago, no studies have quantified their possible adhesive function or described their embryonic development. Here, we characterize adult and embryonic morphology and adhesive performance of crested gecko (Correlophus ciliatus) tail pads. Additionally, we use embryonic data to test whether tail pads are serial homologues to toe pads. External morphology and histology of C. ciliatus tail pads are largely similar to tail pads of closely related geckos. Functionally, C. ciliatus tail pads exhibit impressive adhesive ability, hypothetically capable of holding up to five times their own mass. Tail pads develop at approximately the same time during embryogenesis as toe pads. Further, tail pads exhibit similar developmental patterns to toe pads, which are markedly different from non-adhesive gecko toes and tails. Our data provide support for the serial homology of adhesive tail pads with toe pads.


Assuntos
Lagartos , Adesividade , Adesivos , Animais , Fenômenos Biomecânicos , Biofísica , Lagartos/anatomia & histologia , Dedos do Pé
5.
Nature ; 516(7531): 391-4, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25383527

RESUMO

The move of vertebrates to a terrestrial lifestyle required major adaptations in their locomotory apparatus and reproductive organs. While the fin-to-limb transition has received considerable attention, little is known about the developmental and evolutionary origins of external genitalia. Similarities in gene expression have been interpreted as a potential evolutionary link between the limb and genitals; however, no underlying developmental mechanism has been identified. We re-examined this question using micro-computed tomography, lineage tracing in three amniote clades, and RNA-sequencing-based transcriptional profiling. Here we show that the developmental origin of external genitalia has shifted through evolution, and in some taxa limbs and genitals share a common primordium. In squamates, the genitalia develop directly from the budding hindlimbs, or the remnants thereof, whereas in mice the genital tubercle originates from the ventral and tail bud mesenchyme. The recruitment of different cell populations for genital outgrowth follows a change in the relative position of the cloaca, the genitalia organizing centre. Ectopic grafting of the cloaca demonstrates the conserved ability of different mesenchymal cells to respond to these genitalia-inducing signals. Our results support a limb-like developmental origin of external genitalia as the ancestral condition. Moreover, they suggest that a change in the relative position of the cloacal signalling centre during evolution has led to an altered developmental route for external genitalia in mammals, while preserving parts of the ancestral limb molecular circuitry owing to a common evolutionary origin.


Assuntos
Evolução Biológica , Cloaca/embriologia , Genitália/embriologia , Animais , Linhagem da Célula , Cloaca/anatomia & histologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genitália/anatomia & histologia , Genitália/metabolismo , Camundongos , Filogenia , Transdução de Sinais , Serpentes/embriologia , Transplante de Tecidos , Microtomografia por Raio-X
6.
Dev Dyn ; 248(11): 1070-1090, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31219643

RESUMO

BACKGROUND: One goal of evolutionary developmental biology is to understand the role of development in the origin of phenotypic novelty and convergent evolution. Geckos are an ideal system to study this topic, as they are species-rich and exhibit a suite of diverse morphologies-many of which have independently evolved multiple times within geckos. RESULTS: We characterized and discretized the embryonic development of Lepidodactylus lugubris-an all-female, parthenogenetic gecko species. We also used soft-tissue µCT to characterize the development of the brain and central nervous system, which is difficult to visualize using traditional microscopy techniques. Additionally, we sequenced and assembled a de novo transcriptome for a late-stage embryo as a resource for generating future developmental tools. Herein, we describe the derived and conserved patterns of L. lugubris development in the context of squamate evolution and development. CONCLUSIONS: This embryonic staging series, µCT data, and transcriptome together serve as critical enabling resources to study morphological evolution and development, the evolution and development of parthenogenesis, and other questions concerning vertebrate evolution and development in an emerging gecko model.


Assuntos
Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Lagartos/embriologia , Partenogênese/fisiologia , Transcriptoma/fisiologia , Animais , Feminino
7.
Proc Natl Acad Sci U S A ; 112(32): 9961-6, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216976

RESUMO

Whether the structure of ecological communities can exhibit stability over macroevolutionary timescales has long been debated. The similarity of independently evolved Anolis lizard communities on environmentally similar Greater Antillean islands supports the notion that community evolution is deterministic. However, a dearth of Caribbean Anolis fossils--only three have been described to date--has precluded direct investigation of the stability of anole communities through time. Here we report on an additional 17 fossil anoles in Dominican amber dating to 15-20 My before the present. Using data collected primarily by X-ray microcomputed tomography (X-ray micro-CT), we demonstrate that the main elements of Hispaniolan anole ecomorphological diversity were in place in the Miocene. Phylogenetic analysis yields results consistent with the hypothesis that the ecomorphs that evolved in the Miocene are members of the same ecomorph clades extant today. The primary axes of ecomorphological diversity in the Hispaniolan anole fauna appear to have changed little between the Miocene and the present, providing evidence for the stability of ecological communities over macroevolutionary timescales.


Assuntos
Âmbar/química , Ecossistema , Fósseis , Lagartos/fisiologia , Animais , Teorema de Bayes , Tamanho Corporal , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Região do Caribe , Análise Discriminante , Imageamento Tridimensional , Lagartos/anatomia & histologia , Filogenia , Fatores de Tempo , Microtomografia por Raio-X
8.
Nature ; 477(7366): 587-91, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21881562

RESUMO

The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments. Among amniotes, genome sequences are available for mammals and birds, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes. Also, A. carolinensis mobile elements are very young and diverse-more so than in any other sequenced amniote genome. The GC content of this lizard genome is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.


Assuntos
Aves/genética , Evolução Molecular , Genoma/genética , Lagartos/genética , Mamíferos/genética , Animais , Galinhas/genética , Sequência Rica em GC/genética , Genômica , Humanos , Dados de Sequência Molecular , Filogenia , Sintenia/genética , Cromossomo X/genética
9.
Evol Dev ; 17(3): 198-219, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25963198

RESUMO

Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century.


Assuntos
Evolução Biológica , Biologia do Desenvolvimento , Genética , Animais , Biologia do Desenvolvimento/educação , Biologia do Desenvolvimento/tendências , Redes Reguladoras de Genes , Genética/educação , Genética/tendências , Humanos
10.
Biol Lett ; 11(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26510679

RESUMO

The breadth of anatomical and functional diversity among amniote external genitalia has led to uncertainty about the evolutionary origins of the phallus. In several lineages, including the tuatara, Sphenodon punctatus, adults lack an intromittent phallus, raising the possibility that the amniote ancestor lacked external genitalia and reproduced using cloacal apposition. Accordingly, a phallus may have evolved multiple times in amniotes. However, similarities in development across amniote external genitalia suggest that the phallus may have a single evolutionary origin. To resolve the evolutionary history of amniote genitalia, we performed three-dimensional reconstruction of Victorian era tuatara embryos to look for embryological evidence of external genital initiation. Despite the absence of an intromittent phallus in adult tuataras, our observations show that tuatara embryos develop genital anlagen. This illustrates that there is a conserved developmental stage of external genital development among all amniotes and suggests a single evolutionary origin of amniote external genitalia.


Assuntos
Evolução Biológica , Genitália Masculina/embriologia , Répteis/embriologia , Animais , Masculino , Organogênese , Pênis/embriologia , Filogenia
11.
Proc Biol Sci ; 281(1784): 20140329, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24741020

RESUMO

Sexual dimorphisms vary widely among species. This variation must arise through sex-specific evolutionary modifications to developmental processes. Anolis lizards vary extensively in their expression of cranial dimorphism. Compared with other Anolis species, members of the carolinensis clade have evolved relatively high levels of cranial dimorphism; males of this clade have exceptionally long faces relative to conspecific females. Developmentally, this facial length dimorphism arises through an evolutionarily novel, clade-specific strategy. Our analyses herein reveal that sex-specific regulation of the oestrogen pathway underlies evolution of this exaggerated male phenotype, rather than the androgen or insulin growth factor pathways that have long been considered the primary regulators of male-biased dimorphism among vertebrates. Our results suggest greater intricacy in the genetic mechanisms that underlie sexual dimorphisms than previously appreciated.


Assuntos
Hormônios/genética , Lagartos/anatomia & histologia , Lagartos/fisiologia , Caracteres Sexuais , Crânio/anatomia & histologia , Androgênios/genética , Androgênios/metabolismo , Animais , Estrogênios/genética , Estrogênios/metabolismo , Hormônios/metabolismo , Lagartos/genética , Lagartos/crescimento & desenvolvimento , Masculino , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real , Crânio/crescimento & desenvolvimento , Crânio/fisiologia , Especificidade da Espécie
12.
Integr Comp Biol ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38533654

RESUMO

Adhesive toe pads have evolved numerous times over lizard evolutionary history, most notably in geckos. Despite significant variation in adult toe pad morphology across independent origins of toe pads, early developmental patterns of toe pad morphogenesis are similar among distantly related species. In these distant phylogenetic comparisons, toe pad variation is achieved during the later stages of development. We aimed to understand how toe pad variation is generated among species sharing a single evolutionary origin of toe pads (house geckos-Hemidactylus). We investigated toe pad functional variation and developmental patterns in three species of Hemidactylus, ranging from highly scansorial (H. platyurus), to less scansorial (H. turcicus), to fully terrestrial (H. imbricatus). We found that H. platyurus generated significantly greater frictional adhesive force and exhibited much larger toe pad area relative to the other two species. Furthermore, differences in the offset of toe pad extension phase during embryonic development results in the variable morphologies seen in adults. Taken together, we demonstrate how morphological variation is generated in a complex structure during development and how that variation relates in important functional outcomes.

13.
Mol Ecol Resour ; 23(6): 1299-1318, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37062860

RESUMO

Library preparation protocols for most sequencing technologies involve PCR amplification of the template DNA, which open the possibility that a given template DNA molecule is sequenced multiple times. Reads arising from this phenomenon, known as PCR duplicates, inflate the cost of sequencing and can jeopardize the reliability of affected experiments. Despite the pervasiveness of this artefact, our understanding of its causes and of its impact on downstream statistical analyses remains essentially empirical. Here, we develop a general quantitative model of amplification distortions in sequencing data sets, which we leverage to investigate the factors controlling the occurrence of PCR duplicates. We show that the PCR duplicate rate is determined primarily by the ratio between library complexity and sequencing depth, and that amplification noise (including in its dependence on the number of PCR cycles) only plays a secondary role for this artefact. We confirm our predictions using new and published RAD-seq libraries and provide a method to estimate library complexity and amplification noise in any data set containing PCR duplicates. We discuss how amplification-related artefacts impact downstream analyses, and in particular genotyping accuracy. The proposed framework unites the numerous observations made on PCR duplicates and will be useful to experimenters of all sequencing technologies where DNA availability is a concern.


Assuntos
DNA , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase/métodos , Análise de Sequência de DNA/métodos , DNA/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos
14.
Proc Biol Sci ; 279(1729): 739-48, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21849319

RESUMO

The independent evolution of similar morphologies has long been a subject of considerable interest to biologists. Does phenotypic convergence reflect the primacy of natural selection, or does development set the course of evolution by channelling variation in certain directions? Here, we examine the ontogenetic origins of relative limb length variation among Anolis lizard habitat specialists to address whether convergent phenotypes have arisen through convergent developmental trajectories. Despite the numerous developmental processes that could potentially contribute to variation in adult limb length, our analyses reveal that, in Anolis lizards, such variation is repeatedly the result of changes occurring very early in development, prior to formation of the cartilaginous long bone anlagen.


Assuntos
Extremidades/fisiologia , Lagartos/crescimento & desenvolvimento , Morfogênese , Animais , Evolução Biológica , Extremidades/anatomia & histologia , Lagartos/anatomia & histologia
15.
Biol J Linn Soc Lond ; 135(3): 518-532, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35185322

RESUMO

How developmental modifications produce key innovations, which subsequently allow for rapid diversification of a clade into new adaptive zones, has received much attention. However, few studies have used a robust comparative framework to investigate the influence of evolutionary and developmental constraints on the origin of key innovations, such as the adhesive toe pad of lizards. Adhesive toe pads evolved independently at least 16 times in lizards, allowing us to examine whether the patterns observed are general evolutionary phenomena or unique, lineage-specific events. We performed a high-resolution comparison of plantar scale development in 14 lizard species in Anolis and geckos, encompassing five independent origins of toe pads (one in Anolis, four in geckos). Despite substantial evolutionary divergence between Anolis and geckos, we find that these clades have undergone similar developmental modifications to generate their adhesive toe pads. Relative to the ancestral plantar scale development, in which scale ridges form synchronously along the digit, both padded geckos and Anolis exhibit scansor formation in a distal-to-proximal direction. Both clades have undergone developmental repatterning and, following their origin, modifications in toe pad morphology occurred through relatively minor developmental modifications, suggesting that developmental constraints governed the diversification of the adhesive toe pad in lizards.

16.
Ecol Evol ; 12(7): e9088, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35845359

RESUMO

Loss and reduction in paired appendages are common in vertebrate evolution. How often does such convergent evolution depend on similar developmental and genetic pathways? For example, many populations of the threespine stickleback and ninespine stickleback (Gasterosteidae) have independently evolved pelvic reduction, usually based on independent mutations that caused reduced Pitx1 expression. Reduced Pitx1 expression has also been implicated in pelvic reduction in manatees. Thus, hindlimb reduction stemming from reduced Pitx1 expression has arisen independently in groups that diverged tens to hundreds of millions of years ago, suggesting a potential for repeated use of Pitx1 across vertebrates. Notably, hindlimb reduction based on the reduction in Pitx1 expression produces left-larger directional asymmetry in the vestiges. We used this phenotypic signature as a genetic proxy, testing for hindlimb directional asymmetry in six genera of squamate reptiles that independently evolved hindlimb reduction and for which genetic and developmental tools are not yet developed: Agamodon anguliceps, Bachia intermedia, Chalcides sepsoides, Indotyphlops braminus, Ophisaurus attenuatuas and O. ventralis, and Teius teyou. Significant asymmetry occurred in one taxon, Chalcides sepsoides, whose left-side pelvis and femur vestiges were 18% and 64% larger than right-side vestiges, respectively, suggesting modification in Pitx1 expression in that species. However, there was either right-larger asymmetry or no directional asymmetry in the other five taxa, suggesting multiple developmental genetic pathways to hindlimb reduction in squamates and the vertebrates more generally.

17.
BMC Genomics ; 12: 554, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22077994

RESUMO

BACKGROUND: Comparative studies of amniotes have been hindered by a dearth of reptilian molecular sequences. With the genomic assembly of the green anole, Anolis carolinensis available, non-avian reptilian genes can now be compared to mammalian, avian, and amphibian homologs. Furthermore, with more than 350 extant species in the genus Anolis, anoles are an unparalleled example of tetrapod genetic diversity and divergence. As an important ecological, genetic and now genomic reference, it is imperative to develop a standardized Anolis gene nomenclature alongside associated vocabularies and other useful metrics. RESULTS: Here we report the formation of the Anolis Gene Nomenclature Committee (AGNC) and propose a standardized evolutionary characterization code that will help researchers to define gene orthology and paralogy with tetrapod homologs, provide a system for naming novel genes in Anolis and other reptiles, furnish abbreviations to facilitate comparative studies among the Anolis species and related iguanid squamates, and classify the geographical origins of Anolis subpopulations. CONCLUSIONS: This report has been generated in close consultation with members of the Anolis and genomic research communities, and using public database resources including NCBI and Ensembl. Updates will continue to be regularly posted to new research community websites such as lizardbase. We anticipate that this standardized gene nomenclature will facilitate the accessibility of reptilian sequences for comparative studies among tetrapods and will further serve as a template for other communities in their sequencing and annotation initiatives.


Assuntos
Genômica/normas , Lagartos/genética , Terminologia como Assunto , Animais , Sequência Conservada , Elementos de DNA Transponíveis , Evolução Molecular , Marcadores Genéticos , Lagartos/classificação , Repetições de Microssatélites , Sequências Repetitivas de Ácido Nucleico
18.
J Exp Zool B Mol Dev Evol ; 316B(2): 146-61, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21328530

RESUMO

If we wish to understand whether development influences the rate or direction of morphological evolution, we must first understand the developmental bases of morphological variation within species. However, quantitative variation in adult morphology is the product of molecular and cellular processes unfolding from embryonic development through juvenile growth to maturity. The Atchley-Hall model provides a useful framework for dissecting complex morphologies into their component parts as a way of determining which developmental processes contribute to variation in adult form. We have examined differences in postnatal allometry and the patterns of genetic correlation between age-specific traits for ten recombinant inbred strains of mice generated from an intercross of LG/J and SM/J. Long bone length is closely tied to body size, but variation in adult morphology is more closely tied to differences in growth rate between 3 and 5 weeks of age. These analyses show that variation generated during early development is overridden by variation generated later in life. To more precisely determine the cellular processes generating this variation we then examined the cellular dynamics of long bone growth plates at the time of maximum elongation rate differences in the parent strains. Our analyses revealed that variation in long bone length is the result of faster elongation rates of the LG/J stain. The developmental bases for these differences in growth rate involve the rate of cell division and chondrocyte hypertrophy in the growth plate.


Assuntos
Desenvolvimento Ósseo/genética , Osso e Ossos/anatomia & histologia , Lâmina de Crescimento/fisiologia , Camundongos Endogâmicos/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Estudos de Coortes , Cruzamentos Genéticos , Feminino , Variação Genética , Masculino , Camundongos , Camundongos Endogâmicos/anatomia & histologia , Camundongos Endogâmicos/genética , Estatísticas não Paramétricas
19.
J Exp Biol ; 214(Pt 4): 575-81, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21270305

RESUMO

Tetrapod vertebrates possess multiple α- and ß-like globin genes that are ontogenetically regulated, such that functionally distinct hemoglobin (Hb) isoforms are synthesized during different stages of development. The α- and ß-like globin genes of amphibians, birds and mammals are differentially expressed during embryonic development and postnatal life, but little is known about the developmental regulation of globin gene expression in non-avian reptiles. Here we report an investigation into the developmental regulation of Hb synthesis in the green anole lizard Anolis carolinensis. We tested two hypotheses derived from comparative genomic studies of the globin gene clusters in tetrapod vertebrates. First, we tested whether the product of the Anolis α(D)-globin gene is incorporated into embryonic Hb, thereby performing the role that would normally be performed by the embyronic α(E)-globin gene (which has been deleted from the green anole genome). Second, we tested whether two 'lizard-specific' ß-globin paralogs have independently evolved a division of labor between an early-expressed embryonic gene and a later-expressed adult gene. Results of a proteomic analysis revealed that α- and ß-like globin genes of the anole are differentially expressed during embryonic development. However, the same repertoire of α- and ß-chain Hb isoforms was expressed during all stages of development and postnatal life, and the ontogenetic shifts in isoform composition were relatively subtle. In contrast to the pattern that has been documented in other tetrapod vertebrates, it appears that the developmental regulation of Hb synthesis in the green anole lizard does not involve discrete, stage-specific switches in gene activation and gene silencing.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hemoglobinas/biossíntese , Lagartos/crescimento & desenvolvimento , Isoformas de Proteínas/biossíntese , Animais , Densitometria , Focalização Isoelétrica , Lagartos/metabolismo , Filogenia , Isoformas de Proteínas/genética , Proteômica , Especificidade da Espécie
20.
Ecol Evol ; 11(22): 15484-15497, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34824770

RESUMO

Appendages have been reduced or lost hundreds of times during vertebrate evolution. This phenotypic convergence may be underlain by shared or different molecular mechanisms in distantly related vertebrate clades. To investigate, we reviewed the developmental and evolutionary literature of appendage reduction and loss in more than a dozen vertebrate genera from fish to mammals. We found that appendage reduction and loss was nearly always driven by modified gene expression as opposed to changes in coding sequences. Moreover, expression of the same genes was repeatedly modified across vertebrate taxa. However, the specific mechanisms by which expression was modified were rarely shared. The multiple routes to appendage reduction and loss suggest that adaptive loss of function phenotypes might arise routinely through changes in expression of key developmental genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA