Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 44(11): 3628-3642, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34414578

RESUMO

Strigolactones (SLs) are plant hormones that modulate morphological, physiological and biochemical changes as part of the acclimation strategies to phosphorus (P) deficiency, but an in-depth description of their effects on tomato P-acquisition strategies under P shortage is missing. Therefore, in this study, we investigate how SLs impact on root exudation and P uptake, in qualitative and quantitative terms over time, in wild-type and SL-depleted tomato plants grown with or without P. Under P shortage, SL-depleted plants were unable to efficiently activate most mechanisms associated with the P starvation response (PSR), except for the up-regulation of P transporters and increased activity of P-solubilizing enzymes. The reduced SL biosynthesis had negative effects also under normal P provision, because plants over-activated high-affinity transporters and enzymatic activities (phytase, acidic phosphatase) to sustain elevated P uptake, at great carbon and nitrogen costs. A shift in the onset of PSR was also highlighted in these plants. We conclude that SLs are master kinetic regulators of the PSR in tomato and that their defective synthesis might lead both to suboptimal nutritional outcomes under P depletion and an unbalanced control of P uptake when P is available.


Assuntos
Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Fósforo/metabolismo , Solanum lycopersicum/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Fósforo/deficiência , Proteínas de Plantas/metabolismo , Regulação para Cima
2.
Environ Pollut ; 320: 121048, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634861

RESUMO

Soils high in chromium and selenium exist in some countries, like China, India and the US. In the forms of chromate and selenate, these elements can compete during uptake by plants and lead to secondary effects on the absorption of the essential nutrient sulfur. In this study, we evaluated the potential of Brassica juncea and the Se-hyperaccumulator Stanleya pinnata to take-up and store chromium and selenium when applied individually or jointly, the effect on sulfur content, and the plant antioxidant responses. The aim is to advise the best use of these species in phytotechnologies. Plants were grown hydroponically with 50 µM chromate, 50 µM selenate and equimolar concentrations of both elements (50 µM chromate + 50 µM selenate). Our results suggest that B. juncea and S. pinnata possess transport systems with different affinity for chromate and selenate. The joint application of chromate and selenate restricted the accumulation of both elements, but the reduction of selenate uptake by chromate was more evident in B. juncea. On the other hand, selenate decreased chromium accumulation in B. juncea, whereas in S. pinnata such effect was evident only in roots. B. juncea plants stored more chromium and selenium than S. pinnata due to the higher biomass produced, but less selenium when treated with both elements. Chromate and selenate decreased sulfur accumulation in both species, but B. juncea was more sensitive to their toxicity when applied individually, as revealed by increased lipid peroxidation, hydrogen peroxide content in roots and antioxidant enzyme activity. This species can still be efficient for chromium and selenium phytoextraction as these elements in soil are less available than in hydroponics. In soils high in both elements, or low in selenium, S. pinnata is preferred for selenium phytoextraction and the biomass could be used for crop biofortification due its negligible chromium content.


Assuntos
Mostardeira , Selênio , Antioxidantes , Ácido Selênico , Cromo , Cromatos , Enxofre , Estresse Oxidativo , Solo
3.
Plants (Basel) ; 12(18)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37765455

RESUMO

Lignohumates are increasing in popularity in agriculture, but their chemistry and effects on plants vary based on the source and processing. The present study evaluated the ability of two humates (H1 and H2) to boost maize plant performance under different phosphorus (P) availability (25 and 250 µM) conditions in hydroponics, while understanding the underlying mechanisms. Humates differed in chemical composition, as revealed via elemental analysis, phenol and phytohormone content, and thermal and spectroscopic analyses. H1 outperformed H2 in triggering plant responses to low phosphorus by enhancing phosphatase and phytase enzymes, P acquisition efficiency, and biomass production. It contained higher levels of endogenous auxins, cytokinins, and abscisic acid, likely acting together to stimulate plant growth. H1 also improved the plant antioxidant capacity, thus potentially increasing plant resilience to external stresses. Both humates increased the nitrogen (N) content and acted as biostimulants for P and N acquisition. Consistent with the physiological and biochemical data, H1 upregulated genes involved in growth, hormone signaling and defense in all plants, and in P recycling particularly under low-P conditions. In conclusion, H1 showed promising potential for effective plant growth and nutrient utilization, especially in low-P plants, involving hormonal modulation, antioxidant enhancement, the stimulation of P uptake and P-recycling mechanisms.

4.
Antioxidants (Basel) ; 10(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202330

RESUMO

Dietary selenium (Se)-compounds accumulated in plants are essential for human metabolism and normal physiological processes. Inorganic and organic Se species can be readily absorbed by the human body, but are metabolized differently and thus exhibit distinct mechanisms of action. They can act as antioxidants or serve as a source of Se for the synthesis of selenoproteins. Selenocysteine, in particular, is incorporated at the catalytic center of these proteins through a specific insertion mechanism and, due to its electronic features, enhances their catalytic activity against biological oxidants. Selenite and other Se-organic compounds may also act as direct antioxidants in cells due to their strong nucleophilic properties. In addition, Se-amino acids are more easily subjected to oxidation than the corresponding thiols/thioethers and can bind redox-active metal ions. Adequate Se intake aids in preventing several metabolic disorders and affords protection against viral infections. At present, an epidemic caused by a novel coronavirus (SARS-CoV-2) threatens human health across several countries and impacts the global economy. Therefore, Se-supplementation could be a complementary treatment to vaccines and pharmacological drugs to reduce the viral load, mutation frequency, and enhance the immune system of populations with low Se intake in the diet.

5.
Plast Reconstr Surg Glob Open ; 9(10): e3883, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34712543

RESUMO

BACKGROUND: Orbital exenteration, the removal of the entire globe, eyelids, and orbital content, is indicated in extensive neoplastic disease involving the orbital region. Although a functional reconstruction of orbital exenteration defects is mandatory, aesthetic concerns need to be considered. Facial disfigurement following reconstructive surgery often leads to great discomfort and social retirement, which can limit social interaction. The aim of this study was to explore how the society perceives the aspect of patients who underwent orbital exenteration and subsequent reconstruction, comparing two different types of reconstruction: standard anterolateral thigh (ALT) or "sandwich" fascial ALT (SALT) free flap. METHODS: An online survey was created based on four questions regarding the perception of reconstruction (discomfort at looking at that patient, perception of unhealthiness, hypothesis of social life impairment, etc); five possible answers were provided, ranging from "completely" to "not at all." The survey was administered to the general population and to medical students. RESULTS: In total, 255 people participated to the survey (130 medical students and 125 people of the general population); a total of 245 surveys were considered eligible (10 were incomplete and then discharged). Statistical significance was found (P < 0.001) regarding the better overall appearance of the SALT group over the ALT one. CONCLUSIONS: After analysis, the surgical outcome after SALT reconstruction has been found to be less disruptive in both groups, due to a reduced scar burden and a more pleasant orbital pocket. Our results encourage more research in the field of postexenteration reconstruction to achieve more aesthetic and social acceptability.

6.
Plants (Basel) ; 9(7)2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32674305

RESUMO

As members of the plant microbiota, arbuscular mycorrhizal fungi (AMF) may be effective in enhancing plant resilience to drought, one of the major limiting factors threatening crop productivity. AMF host their own microbiota and previous data demonstrated that endobacteria thriving in Gigaspora margarita modulate fungal antioxidant responses. Here, we used the G. margarita-Candidatus Glomeribacter gigasporarum system to test whether the tripartite interaction between tomato, G. margarita and its endobacteria may improve plant resilience to combined water/nutrient stress. Tomato plants were inoculated with spores containing endobacteria (B+) or not (B-), and exposed to combined water/nutrient stress. Plants traits, AM colonization and expression of AM marker genes were measured. Results showed that mycorrhizal frequency was low and no growth effect was observed. Under control conditions, B+ inoculated plants were more responsive to the symbiosis, as they showed an up-regulation of three AM marker genes involved in phosphate and lipids metabolism compared with B- inoculated or not-inoculated plants. When combined stress was imposed, the difference between fungal strains was still evident for one marker gene. These results indicate that the fungal endobacteria finely modulate plant metabolism, even in the absence of growth response.

7.
Plants (Basel) ; 9(5)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403352

RESUMO

The hormones strigolactones accumulate in plant roots under phosphorus (P) shortage, inducing variations in plant phenotype. In this study, we aimed at understanding whether strigolactones control morphological and anatomical changes in tomato (Solanum lycopersicum L.) roots under varying P supply. Root traits were evaluated in wild-type seedlings grown in high vs low P, with or without exogenous strigolactones, and in wild-type and strigolactone-depleted plants grown first under high vs no P, and then under high vs no P after acclimation on low P. Exogenous strigolactones stimulated primary root and lateral root number under low P. Root growth was reduced in strigolactone-depleted plants maintained under continuous P deprivation. Total root and root hair length, lateral root number and root tip anatomy were impaired by low strigolactone biosynthesis in plants grown under low P or transferred from low to no P. Under adequate P conditions, root traits of strigolactone-depleted and wild-type plants were similar. Concluding, our results indicate that strigolactones i) control macro- and microscopic changes of root in tomato depending on P supply; and ii) do not affect root traits significantly when plants are supplemented with adequate P, but are needed for acclimation to no P and typical responses to low P.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA