Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Toxicol Appl Pharmacol ; 280(2): 352-61, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25151221

RESUMO

Chronic oral exposure to hexavalent chromium (Cr-VI) in drinking water has been shown to induce tumors in the mouse gastrointestinal (GI) tract and rat oral cavity. The same is not true for trivalent chromium (Cr-III). Thus reduction of Cr-VI to Cr-III in gastric juices is considered a protective mechanism, and it has been suggested that the difference between the rate of reduction among mice, rats, and humans could explain or predict differences in sensitivity to Cr-VI. We evaluated previously published models of gastric reduction and believe that they do not fully describe the data on reduction as a function of Cr-VI concentration, time, and (in humans) pH. The previous models are parsimonious in assuming only a single reducing agent in rodents and describing pH-dependence using a simple function. We present a revised model that assumes three pools of reducing agents in rats and mice with pH-dependence based on known speciation chemistry. While the revised model uses more fitted parameters than the original model, they are adequately identifiable given the available data, and the fit of the revised model to the full range of data is shown to be significantly improved. Hence the revised model should provide better predictions of Cr-VI reduction when integrated into a corresponding PBPK model.


Assuntos
Cromo/farmacocinética , Suco Gástrico/metabolismo , Animais , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Modelos Biológicos , Oxirredução , Ratos
2.
Theor Biol Med Model ; 7: 17, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20525215

RESUMO

BACKGROUND: Humans are routinely and concurrently exposed to multiple toxic chemicals, including various metals and organics, often at levels that can cause adverse and potentially synergistic effects. However, toxicokinetic modeling studies of exposures to these chemicals are typically performed on a single chemical basis. Furthermore, the attributes of available models for individual chemicals are commonly estimated specifically for the compound studied. As a result, the available models usually have parameters and even structures that are not consistent or compatible across the range of chemicals of concern. This fact precludes the systematic consideration of synergistic effects, and may also lead to inconsistencies in calculations of co-occurring exposures and corresponding risks. There is a need, therefore, for a consistent modeling framework that would allow the systematic study of cumulative risks from complex mixtures of contaminants. METHODS: A Generalized Toxicokinetic Modeling system for Mixtures (GTMM) was developed and evaluated with case studies. The GTMM is physiologically-based and uses a consistent, chemical-independent physiological description for integrating widely varying toxicokinetic models. It is modular and can be directly "mapped" to individual toxicokinetic models, while maintaining physiological consistency across different chemicals. Interaction effects of complex mixtures can be directly incorporated into the GTMM. CONCLUSIONS: The application of GTMM to different individual metals and metal compounds showed that it explains available observational data as well as replicates the results from models that have been optimized for individual chemicals. The GTMM also made it feasible to model toxicokinetics of complex, interacting mixtures of multiple metals and nonmetals in humans, based on available literature information. The GTMM provides a central component in the development of a "source-to-dose-to-effect" framework for modeling population health risks from environmental contaminants. As new data become available on interactions of multiple chemicals, the GTMM can be iteratively parameterized to improve mechanistic understanding of human health risks from exposures to complex mixtures of chemicals.


Assuntos
Metais/farmacocinética , Metais/toxicidade , Modelos Biológicos
3.
Environ Int ; 144: 106031, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32798798

RESUMO

BACKGROUND: Human exposures to bisphenol A (BPA) are widespread. The current study addresses uncertainties regarding human pharmacokinetics of BPA following dermal exposure. OBJECTIVE: To examine the absorption, distribution, metabolism and excretion of BPA in humans following dermal administration. METHODS: We dermally administered deuterated BPA (d6-BPA) to 10 subjects (6 men and 4 women) at a dose of 100 µg/kg over a 12-hour period and conducted blood and urine analysis from the beginning of dosing through a three- or six-day period. We present time-course serum and urine concentrations of total and unconjugated ("free") d6-BPA and used this information to calculate terminal half-life and area under the curve. RESULTS AND CONCLUSIONS: Detectable serum levels of total d6-BPA were observed at 1.4 h after the start of dosing, and a maximum serum concentration (Cmax) of 3.26 nM was observed. Free d6-BPA was detectable in serum 2.8 h after start of dermal administration, with Cmax of 0.272 nM. Beginning at approximately seven hours and continuing to 12 h (which corresponds to cessation of exposure), the concentration of free and total serum d6-BPA plateaued. The terminal half-lives of total d6-BPA and free d6-BPA in the body were 21.4 ± 9.81 h and 17.6 ± 7.69 h, respectively. Elimination from the body was rate-limited by kinetics in the dermal compartment. Free d6-BPA was a greater percentage of the area under the curve of total serum BPA (8.81%) compared to the 0.56% observed in our previously published oral study. Recovery of total d6-BPA in urine was <2% of the applied dose after six days. Analysis of the area under the curve for dermal and oral administration revealed that 2.2% of the dermal dose became systemically available. These data are in line with prior studies indicating how pharmacokinetics of BPA differ following oral and dermal exposures. Dermal exposure resulted in a longer apparent half-life and higher free:total d6-BPA ratio compared to oral.


Assuntos
Compostos Benzidrílicos , Fenóis , Administração Cutânea , Administração Oral , Feminino , Meia-Vida , Humanos , Masculino
4.
Toxicol Sci ; 131(2): 360-74, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23143927

RESUMO

Physiologically based pharmacokinetic (PBPK) models are tools for interpreting toxicological data and extrapolating observations across species and route of exposure. Chloroform (CHCl(3)) is a chemical for which there are PBPK models available in different species and multiple sites of toxicity. Because chloroform induces toxic effects in the liver and kidneys via production of reactive metabolites, proper characterization of metabolism in these tissues is essential for risk assessment. Although hepatic metabolism of chloroform is adequately described by these models, there is higher uncertainty for renal metabolism due to a lack of species-specific data and direct measurements of renal metabolism. Furthermore, models typically fail to account for regional differences in metabolic capacity within the kidney. Mischaracterization of renal metabolism may have a negligible effect on systemic chloroform levels, but it is anticipated to have a significant impact on the estimated site-specific production of reactive metabolites. In this article, rate parameters for chloroform metabolism in the kidney are revised for rats, mice, and humans. New in vitro data were collected in mice and humans for this purpose and are presented here. The revised PBPK model is used to interpret data of chloroform-induced kidney toxicity in rats and mice exposed via inhalation and drinking water. Benchmark dose (BMD) modeling is used to characterize the dose-response relationship of kidney toxicity markers as a function of PBPK-derived internal kidney dose. Applying the PBPK model, it was also possible to characterize the dose response for a recent data set of rats exposed via multiple routes simultaneously. Consistent BMD modeling results were observed regardless of species or route of exposure.


Assuntos
Clorofórmio/toxicidade , Citocromo P-450 CYP2E1/metabolismo , Córtex Renal/efeitos dos fármacos , Modelos Biológicos , Animais , Clorofórmio/farmacocinética , Relação Dose-Resposta a Droga , Córtex Renal/enzimologia , Córtex Renal/metabolismo , Camundongos , Ratos
5.
J Toxicol ; 2012: 895391, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22315591

RESUMO

A lipid-based physiologically based toxicokinetic (PBTK) model has been developed for a mixture of six polychlorinated biphenyls (PCBs) in rats. The aim of this study was to apply population Bayesian analysis to a lipid PBTK model, while incorporating an internal exposure-response model linking enzyme induction and metabolic rate. Lipid-based physiologically based toxicokinetic models are a subset of PBTK models that can simulate concentrations of highly lipophilic compounds in tissue lipids, without the need for partition coefficients. A hierarchical treatment of population metabolic parameters and a CYP450 induction model were incorporated into the lipid-based PBTK framework, and Markov-Chain Monte Carlo was applied to in vivo data. A mass balance of CYP1A and CYP2B in the liver was necessary to model PCB metabolism at high doses. The linked PBTK/induction model remained on a lipid basis and was capable of modeling PCB concentrations in multiple tissues for all dose levels and dose profiles.

6.
J Expo Sci Environ Epidemiol ; 19(2): 149-71, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18368010

RESUMO

A conceptual/computational framework for exposure reconstruction from biomarker data combined with auxiliary exposure-related data is presented, evaluated with example applications, and examined in the context of future needs and opportunities. This framework employs physiologically based toxicokinetic (PBTK) modeling in conjunction with numerical "inversion" techniques. To quantify the value of different types of exposure data "accompanying" biomarker data, a study was conducted focusing on reconstructing exposures to chlorpyrifos, from measurements of its metabolite levels in urine. The study employed biomarker data as well as supporting exposure-related information from the National Human Exposure Assessment Survey (NHEXAS), Maryland, while the MENTOR-3P system (Modeling ENvironment for TOtal Risk with Physiologically based Pharmacokinetic modeling for Populations) was used for PBTK modeling. Recently proposed, simple numerical reconstruction methods were applied in this study, in conjunction with PBTK models. Two types of reconstructions were studied using (a) just the available biomarker and supporting exposure data and (b) synthetic data developed via augmenting available observations. Reconstruction using only available data resulted in a wide range of variation in estimated exposures. Reconstruction using synthetic data facilitated evaluation of numerical inversion methods and characterization of the value of additional information, such as study-specific data that can be collected in conjunction with the biomarker data. Although the NHEXAS data set provides a significant amount of supporting exposure-related information, especially when compared to national studies such as the National Health and Nutrition Examination Survey (NHANES), this information is still not adequate for detailed reconstruction of exposures under several conditions, as demonstrated here. The analysis presented here provides a starting point for introducing improved designs for future biomonitoring studies, from the perspective of exposure reconstruction; identifies specific limitations in existing exposure reconstruction methods that can be applied to population biomarker data; and suggests potential approaches for addressing exposure reconstruction from such data.


Assuntos
Biomarcadores/análise , Biofarmácia , Exposição Ambiental/análise , Poluentes Ambientais/administração & dosagem , Algoritmos , Teorema de Bayes , Biomarcadores/química , Biomarcadores/urina , Biofarmácia/métodos , Biofarmácia/estatística & dados numéricos , Poluentes Ambientais/química , Poluentes Ambientais/farmacocinética , Poluentes Ambientais/urina , Humanos , Método de Monte Carlo , Grupos Populacionais/classificação , Grupos Populacionais/estatística & dados numéricos , Medição de Risco , Processos Estocásticos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA