Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Physiol Mol Biol Plants ; 30(2): 249-267, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38623163

RESUMO

Currently, salinization is impacting more than 50% of arable land, posing a significant challenge to agriculture globally. Salt causes osmotic and ionic stress, determining cell dehydration, ion homeostasis, and metabolic process alteration, thus negatively influencing plant development. A promising sustainable approach to improve plant tolerance to salinity is the use of plant growth-promoting bacteria (PGPB). This work aimed to characterize two bacterial strains, that have been isolated from pea root nodules, initially called PG1 and PG2, and assess their impact on growth, physiological, biochemical, and molecular parameters in three pea genotypes (Merveille de Kelvedon, Lincoln, Meraviglia d'Italia) under salinity. Bacterial strains were molecularly identified, and characterized by in vitro assays to evaluate the plant growth promoting abilities. Both strains were identified as Erwinia sp., demonstrating in vitro biosynthesis of IAA, ACC deaminase activity, as well as the capacity to grow in presence of NaCl and PEG. Considering the inoculation of plants, pea biometric parameters were unaffected by the presence of the bacteria, independently by the considered genotype. Conversely, the three pea genotypes differed in the regulation of antioxidant genes coding for catalase (PsCAT) and superoxide dismutase (PsSOD). The highest proline levels (212.88 µmol g-1) were detected in salt-stressed Lincoln plants inoculated with PG1, along with the up-regulation of PsSOD and PsCAT. Conversely, PG2 inoculation resulted in the lowest proline levels that were observed in Lincoln and Meraviglia d'Italia (35.39 and 23.67 µmol g-1, respectively). Overall, this study highlights the potential of these two strains as beneficial plant growth-promoting bacteria in saline environments, showing that their inoculation modulates responses in pea plants, affecting antioxidant gene expression and proline accumulation. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01419-8.

2.
Plant Cell Environ ; 46(3): 889-900, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36541420

RESUMO

In forests, mycorrhizal fungi regulate carbon (C) and nitrogen (N) dynamics. We evaluated the interplay among ectomycorrhizas (ECM), ecosystem C fluxes, tree productivity, C and N exchange and isotopic fractionation along the soil-ECM-plant continuum in a Mediterranean beech forest. From bud break to leaf shedding, we monitored: net ecosystem exchange (NEE, a measure of the net exchange of C between an ecosystem and the atmosphere), leaf area index, stem growth, N concentration, δ13 C and δ15 N in rhizosphere soil, ectomycorrhizal fine root tips (ERT), ECM-free fine root portions (NCR) and leaves. Seasonal changes in ERT relative biomass were strictly related to NEE and mimicked those detected in the radial growth. The analysis of δ13 C in ERT, leaves and NCR highlighted the impact of canopy photosynthesis on ERT development and an asynchronous seasonal C allocation strategy between ERT and NCR at the root tips level. Concerning N, δ15 N of leaves was negatively related to that of ERT and dependent on seasonal 15 N differences between ERT and NCR. Our results unravel a synchronous C allocation towards ERT and tree stem driven by the increasing NEE in spring-early summer. Moreover, they highlighted a phenology-dependent 15 N fractionation during N transfer from ECM to their hosts. This evidence, obtained in mature beech trees under natural conditions, may improve the knowledge of Mediterranean forests functionality.


Assuntos
Fagus , Micorrizas , Carbono , Nitrogênio , Ecossistema , Dióxido de Carbono , Florestas , Árvores/fisiologia , Isótopos , Solo
3.
Mycorrhiza ; 30(5): 589-600, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32533256

RESUMO

Arbuscular mycorrhizal fungi (AMF) live in symbiosis with plant roots, facilitating mineral nutrient transfer from soil to hosts through large networks of extraradical hyphae. Limited data are available on the fungal structures (appressoria) connecting soil- to root-based mycelium, in relation to plant nutrition. Two in vivo systems were set up using three AMF, Funneliformis mosseae, Funneliformis coronatus and Rhizoglomus irregulare, grown in symbiosis with Cichorium intybus. The assessment of plant P content, number of appressoria, diameter of their subtending hyphae and length of colonized roots allowed calculation of the total cross-section area of appressorium-subtending hyphae, which differed among the three AMF and was correlated with plant P contents and with extraradical mycelium density. A conservative evaluation of P fluxes from soil- to plant-based hyphae occurring through appressoria gave values ranging from 1.7 to 4.2 × 10-8 mol cm-2 s-1 (moles per total cross-section area of the appressorium subtending hyphae per time elapsed), depending on AMF identity. This work suggests that, beyond intraradical colonization and extraradical mycelium extent, connections between extraradical and intraradical fungal mycelium through appressoria are important for mycorrhizal plant nutrition, as appressorium structural traits and density can be related to P transfer mediated by AMF.


Assuntos
Micorrizas , Hifas , Fósforo , Raízes de Plantas , Solo
4.
Mycorrhiza ; 30(2-3): 373-387, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32227272

RESUMO

Arbuscular mycorrhizal fungi (AMF) play a fundamental role in plant growth and nutrition in natural and agricultural ecosystems. Despite the importance of such symbionts, the different developmental changes occurring during the AMF life cycle have not been fully elucidated at the molecular level. Here, the RNA-seq approach was used to investigate Rhizoglomus irregulare specific and common transcripts at two different time points of mycorrhizal establishment in Helianthus annuus in vivo. Four days after inoculation, transcripts related to cellular remodeling (actin and tubulin), cellular signaling (calmodulin, serine/threonine protein kinase, 14-3-3 protein, and calcium transporting ATPase), lipid metabolism (fatty acid desaturation, steroid hormone, and glycerophospholipid biosynthesis), and biosynthetic processes were detected. In addition to such transcripts, 16 days after inoculation, expressed genes linked to binding and catalytic activities; ion (K+, Ca2+, Fe2+, Zn2+, Mn2+, Pi, ammonia), sugar, and lipid transport; and those involved in vacuolar polyphosphate accumulation were found. Knowledge of transcriptomic changes required for symbiosis establishment and performance is of great importance to understand the functional role of AMF symbionts in food crop nutrition and health, and in plant diversity in natural ecosystems.


Assuntos
Glomeromycota , Helianthus , Micorrizas , Ecossistema , Raízes de Plantas , RNA-Seq , Simbiose
5.
Mycorrhiza ; 30(2-3): 389-396, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32215759

RESUMO

Arbuscular mycorrhizal fungi (AMF) absorb and translocate nutrients from soil to their host plants by means of a wide network of extraradical mycelium (ERM). Here, we assessed whether nitrogen-fixing rhizobia can be transferred to the host legume Glycine max by ERM produced by Glomus formosanum isolate CNPAB020 colonizing the grass Urochloa decumbens. An H-bridge experimental system was developed to evaluate the migration of ERM and of the GFP-tagged Bradyrhizobium diazoefficiens USDA 110 strain across an air gap compartment. Mycorrhizal colonization, nodule formation in legumes, and occurrence of the GFP-tagged strain in root nodules were assessed by optical and confocal laser scanning microscopy. In the presence of non-mycorrhizal U. decumbens, legume roots were neither AMF-colonized nor nodulated. In contrast, G. formosanum ERM crossing the discontinuous compartment connected mycorrhizal U. decumbens and G. max roots, which showed 30-42% mycorrhizal colonization and 7-11 nodules per plant. Fluorescent B. diazoefficiens cells were detected in 94% of G. max root nodules. Our findings reveal that, besides its main activity in nutrient transfer, ERM produced by AMF may facilitate bacterial translocation and the simultaneous associations of plants with beneficial fungi and bacteria, representing an important structure, functional to the establishment of symbiotic relationships.


Assuntos
Fabaceae , Micorrizas , Bactérias , Nitrogênio , Raízes de Plantas , Simbiose
6.
Mycorrhiza ; 29(4): 341-349, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31190279

RESUMO

The extraradical mycelium (ERM) produced by arbuscular mycorrhizal fungi is fundamental for the maintenance of biological fertility in agricultural soils, representing an important inoculum source, together with spores and mycorrhizal root fragments. Its viability and structural traits, such as density, extent and interconnectedness, which are positively correlated with the growth and nutrition of host plants, may be affected by different agronomic practices, including the use of pesticides and by different mycorrhizospheric communities. This work, carried out using a whole-plant experimental model system, showed that structural traits of ERM, such as length and density, were strongly decreased by the herbicides dicamba and glufosinolate and the fungicides benomyl and fenhexamid, while anastomosis frequency and hyphal branching were differentially modulated by singly inoculated mycorrhizospheric bacteria, depending on their identity.


Assuntos
Fenômenos Fisiológicos Bacterianos , Cichorium intybus/microbiologia , Fungicidas Industriais/farmacologia , Glomeromycota/efeitos dos fármacos , Glomeromycota/crescimento & desenvolvimento , Herbicidas/farmacologia , Micélio/crescimento & desenvolvimento , Micorrizas/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Benomilo/farmacologia , Cichorium intybus/crescimento & desenvolvimento , Dicamba/farmacologia , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Micorrizas/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Esporos Bacterianos/genética , Esporos Bacterianos/isolamento & purificação , Esporos Bacterianos/fisiologia
7.
Mycorrhiza ; 28(4): 329-341, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29574495

RESUMO

Arbuscular mycorrhizal fungi (AMF) are widespread, important plant symbionts. They absorb and translocate mineral nutrients from the soil to host plants through an extensive extraradical mycelium, consisting of indefinitely large networks of nonseptate, multinucleated hyphae which may be interconnected by hyphal fusions (anastomoses). This work investigated whether different lineages of the same isolate may lose the ability to establish successful anastomoses, becoming vegetatively incompatible, when grown separately. The occurrence of hyphal incompatibility among five lineages of Funneliformis mosseae, originated from the same ancestor isolate and grown in vivo for more than 20 years in different European locations, was assessed by systematic detection of anastomosis frequency and cytological studies. Anastomosis frequencies ranged from 60 to 80% within the same lineage and from 17 to 44% among different lineages. The consistent detection of protoplasm continuity and nuclei in perfect fusions showed active protoplasm flow both within and between lineages. In pairings between different lineages, post-fusion incompatible reactions occurred in 6-48% of hyphal contacts and pre-fusion incompatibility in 2-17%. Molecular fingerprinting profiles showed genetic divergence among lineages, with overall Jaccard similarity indices ranging from 0.85 to 0.95. Here, phenotypic divergence among the five F. mosseae lineages was demonstrated by the reduction of their ability to form anastomosis and the detection of high levels of vegetative incompatibility. Our data suggest that potential genetic divergence may occur in AMF over only 20 years and represent the basis for detailed studies on the relationship between genes regulating anastomosis formation and hyphal compatibility in AMF.


Assuntos
DNA Fúngico/análise , Glomeromycota/genética , Fenótipo , Seleção Genética , Impressões Digitais de DNA , Glomeromycota/crescimento & desenvolvimento , Hifas/crescimento & desenvolvimento
8.
Mycorrhiza ; 27(7): 659-668, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28573458

RESUMO

Arbuscular mycorrhizal fungi (AMF) establish beneficial mutualistic symbioses with land plants, receiving carbon in exchange for mineral nutrients absorbed by the extraradical mycelium (ERM). With the aim of obtaining in vivo produced ERM for gene expression analyses, a whole-plant bi-dimensional experimental system was devised and tested with three host plants and three fungal symbionts. In such a system, Funneliformis mosseae in symbiosis with Cichorium intybus var. foliosum, Lactuca sativa, and Medicago sativa produced ERM whose lengths ranged from 9.8 ± 0.8 to 20.8 ± 1.2 m per plant. Since ERM produced in symbiosis with C. intybus showed the highest values for the different structural parameters assessed, this host was used to test the whole-plant system with F. mosseae, Rhizoglomus irregulare, and Funneliformis coronatus. The whole-plant system yielded 1-7 mg of ERM fresh biomass per plant per harvest, and continued producing new ERM for 6 months. Variable amounts of high-quality and intact total RNA, ranging from 15 to 65 µg RNA/mg ERM fresh weight, were extracted from the ERM of the three AMF isolates. Ammonium transporter gene expression was successfully determined in the cDNAs obtained from ERM of the three fungal symbionts by RT-qPCR using gene-specific primers designed on available (R. irregulare) and new (F. mosseae and F. coronatus) ammonium transporter gene sequences. The whole-plant experimental system represents a useful research tool for large production and easy collection of ERM for morphological, physiological, and biochemical analyses, suitable for a wide variety of AMF species, for a virtually limitless range of host plants and for studies involving diverse symbiotic interactions.


Assuntos
Cichorium intybus/microbiologia , Perfilação da Expressão Gênica/métodos , Glomeromycota/genética , Micorrizas/genética , Transcriptoma , Cichorium intybus/fisiologia , Micorrizas/fisiologia
9.
Mycorrhiza ; 26(4): 325-32, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26630971

RESUMO

Arbuscular mycorrhizal fungi (AMF) live in symbiosis with most plant species and produce underground extraradical hyphal networks functional in the uptake and translocation of mineral nutrients from the soil to host plants. This work investigated whether fungal genotype can affect patterns of interconnections and structural traits of extraradical mycelium (ERM), by comparing three Glomeraceae species growing in symbiosis with five plant hosts. An isolate of Funneliformis coronatus consistently showed low ability to form interconnected ERM and self-incompatibility that represented up to 21% of hyphal contacts. The frequency of post-fusion self-incompatible interactions, never detected before in AMF extraradical networks, was 8.9%. In F. coronatus ERM, the percentage of hyphal contacts leading to perfect hyphal fusions was 1.2-7.7, while it ranged from 25.8-48 to 35.6-53.6 in Rhizophagus intraradices and Funneliformis mosseae, respectively. Low interconnectedness of F. coronatus ERM resulted also from a very high number of non-interacting contacts (83.2%). Such findings show that AMF genotypes in Glomeraceae can differ significantly in anastomosis behaviour and that ERM interconnectedness is modulated by the fungal symbiont, as F. coronatus consistently formed poorly interconnected networks when growing in symbiosis with five different host plants and in the asymbiotic stage. Structural traits, such as extent, density and hyphal self-compatibility/incompatibility, may represent key factors for the differential performance of AMF, by affecting fungal absorbing surface and foraging ability and thus nutrient flow from soil to host roots.


Assuntos
Glomeromycota/crescimento & desenvolvimento , Hifas/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Plantas/microbiologia , Glomeromycota/classificação , Glomeromycota/fisiologia , Hifas/classificação , Hifas/genética , Micorrizas/classificação , Micorrizas/fisiologia , Fenômenos Fisiológicos Vegetais , Simbiose
10.
Electrophoresis ; 35(11): 1535-46, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25025092

RESUMO

Fresh fruits and vegetables are largely investigated for their content in vitamins, mineral nutrients, dietary fibers, and plant secondary metabolites, collectively called phytochemicals, which play a beneficial role in human health. Quantity and quality of phytochemicals may be detected by using different analytical techniques, providing accurate quantification and identification of single molecules, along with their molecular structures, and allowing metabolome analyses of plant-based foods. Phytochemicals concentration and profiles are affected by biotic and abiotic factors linked to plant genotype, crop management, harvest season, soil quality, available nutrients, light, and water. Soil health and biological fertility play a key role in the production of safe plant foods, as a result of the action of beneficial soil microorganisms, in particular of the root symbionts arbuscular mycorrhizal fungi. They improve plant nutrition and health and induce changes in secondary metabolism leading to enhanced biosynthesis of health-promoting phytochemicals, such as polyphenols, carotenoids, flavonoids, phytoestrogens, and to a higher activity of antioxidant enzymes. In this review we discuss reports on health-promoting phytochemicals and analytical methods used for their identification and quantification in plants, and on arbuscular mycorrhizal fungi impact on fruits and vegetables nutritional and nutraceutical value.


Assuntos
Suplementos Nutricionais/análise , Micorrizas , Compostos Fitoquímicos/análise , Fenômenos Fisiológicos Vegetais , Plantas/microbiologia , Simbiose , Animais , Cromatografia Líquida de Alta Pressão/métodos , Frutas/química , Frutas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Micorrizas/química , Micorrizas/fisiologia , Micorrizas/ultraestrutura , Compostos Fitoquímicos/metabolismo , Plantas/química , Verduras/química , Verduras/metabolismo
11.
Mycorrhiza ; 23(4): 325-31, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23314797

RESUMO

Hyphal anastomoses which play a key role in the formation of interconnected mycorrhizal networks and in genetic exchange among compatible individuals have been studied in a limited number of species and isolates of arbuscular mycorrhizal fungi (AMF), mainly in symbiotic mycelium. In this work, the occurrence and frequency of anastomosis between hyphae of the same and different germlings were assessed in tropical isolates belonging to Acaulospora, Claroideoglomus, Gigaspora, Glomus, Rhizophagus and Scutellospora. Germlings belonging to Acaulospora, Claroideoglomus, Glomus and Rhizophagus formed perfect hyphal fusions, with frequencies ranging from 9.29 ± 3.01 to 79.84 ± 4.39 % within the same germling and from 14.02 ± 7.36 to 91.41 ± 3.92 % between different germlings. Rare fusions, occurring within the same hypha, were detected in Gigaspora species, and no anastomoses were observed in Scutellospora species. The consistent detection of nuclei in perfect fusions suggests that nuclear migration is active both within and between germlings. Present data on anastomosis formation, nuclear migration and germling viability in tropical isolates of AMF widen our knowledge on the extensive and consistent occurrence of successful hyphal fusions in this group of beneficial symbionts. The ability to anastomose and establish protoplasm flow, fundamental for the maintenance of physiological and genetic continuity, may produce important fitness consequences for the obligately biotrophic AMF.


Assuntos
Glomeromycota/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Glomeromycota/classificação , Glomeromycota/genética , Hifas/classificação , Hifas/genética , Hifas/crescimento & desenvolvimento , Micorrizas/classificação , Micorrizas/genética , Microbiologia do Solo , Esporos Fúngicos/classificação , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Clima Tropical
12.
Curr Res Microb Sci ; 5: 100205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077268

RESUMO

Legumes improve soil fertility by interacting symbiotically with nitrogen-fixing rhizobia allocated in root nodules. Some bacterial endophytes can coexist with rhizobia in nodules and might help legumes by enhancing stress tolerance, producing hormones stimulating plant growth, and increasing plant nutrient intake. Twenty-six bacterial endophytes from Lens culinaris root nodules cultivated in intercropping with Triticum durum were identified and characterized molecularly and biochemically. Potential plant growth-promoting strains have been selected according to the indole acetic acid and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production, and for their inorganic phosphate solubilization ability. The presence of genes associated to ACC deaminase and nitrogenase was evaluated. Six selected strains were grown with varying NaCl and polyethylene glycol concentrations to test their salt and osmotic stress tolerance. Priestia megaterium 11NL3 and Priestia aryabhattai 19NL1, resulted to be tolerant to salinity and osmotic stress, were tested on four genotypes of T. durum seeds in different stress conditions. The effect of strain inoculation on seed germination, vigor, and root-to-shoot ratio varied depending on the type of stress and on the durum wheat genotypes. For future research, it will be necessary to test the selected bacterial strains at different plant phenological stages and to clarify the mechanisms involved in the different outcomes of plant-microbe interactions.

13.
Sci Rep ; 12(1): 21279, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482115

RESUMO

Food production is heavily dependent on soil phosphorus (P), a non-renewable mineral resource essential for plant growth and development. Alas, about 80% is unavailable for plant uptake. Arbuscular mycorrhizal fungi may promote soil P efficient use, although the mechanistic aspects are yet to be completely understood. In this study, plant and fungal variables involved in P acquisition were investigated in maize inbred lines, differing for mycorrhizal responsiveness and low-P tolerance, when inoculated with the symbiont Rhizoglomus irregulare (synonym Rhizophagus irregularis). The expression patterns of phosphate transporter (PT) genes in extraradical and intraradical mycelium (ERM/IRM) and in mycorrhizal and control maize roots were assessed, together with plant growth responses and ERM extent and structure. The diverse maize lines differed in plant and fungal accumulation patterns of PT transcripts, ERM phenotypic traits and plant performance. Mycorrhizal plants of the low-P tolerant maize line Mo17 displayed increased expression of roots and ERM PT genes, compared with the low-P susceptible line B73, which revealed larger ERM hyphal densities and interconnectedness. ERM structural traits showed significant correlations with plant/fungal expression levels of PT genes and mycorrhizal host benefit, suggesting that both structural and functional traits are differentially involved in the regulation of P foraging capacity in mycorrhizal networks.


Assuntos
Micorrizas , Zea mays , Proteínas de Transporte de Fosfato/genética , Zea mays/genética , Zea mays/microbiologia
14.
Foods ; 11(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36429202

RESUMO

Lettuce is widely used for its healthy properties, and it is of interest to increase them with minimal environmental impact. The purpose of this work was to evaluate the effect of the arbuscular mycorrhizal fungus (AMF) Funneliformis mosseae in lettuce plants (Lactuca sativa L. cv. Salinas) cultivated in a soilless system with sub-optimal phosphorus (P) compared with non-inoculated controls at two different P concentrations. Results show that lettuce inoculation with the selected AMF can improve the growth and the nutritional quality of lettuce even at sub-optimal P. Leaf content of chlorophylls, carotenoids, and phenols, known as important bioactive compounds for human health, was higher in mycorrhizal lettuce plants compared with non-mycorrhizal plants. The antioxidant capacity in AMF plants showed higher values compared with control plants grown at optimal P nutrition level. Moreover, leaf gas exchanges were higher in inoculated plants than in non-inoculated ones. Nitrogen, P, and magnesium leaf content was significantly higher in mycorrhizal plants compared with non-mycorrhizal plants grown with the same P level. These findings suggest that F. mosseae can stimulate plants growth, improving the nutritional quality of lettuce leaves even when grown with sub-optimal P concentration.

15.
Mycologia ; 103(2): 307-16, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21139032

RESUMO

Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs; nevertheless their spores can germinate in the absence of host plants. Such inconsistent behavior is balanced by diverse survival strategies. The ability of AM fungal hyphae to fuse might represent a fundamental survival strategy because germlings could plug into compatible mycorrhizal networks, thus gaining access to plant-derived carbon before asymbiotic growth arrest. An in vivo experimental system was used to grow extraradical mycelium produced by Glomus mosseae colonizing three different plant species and germlings of the same isolate. After symbiotic and asymbiotic mycelia came into contact we showed that germling hyphae fused with symbiotic network hyphae and established protoplasm connections with nuclei occurring in fusion bridges. The frequency of anastomoses between germling and symbiotic hyphae was 4.9-23.9%. Prefusion and postfusion incompatible responses, with protoplasm withdrawal in interacting hyphae, were evident in some hyphal contacts. Given the multigenomic nature of AMF, the mingling of germling nuclei with those of the mycorrhizal network through perfect fusions might represent a means for the maintenance of genetic diversity in the absence of sexual recombination.


Assuntos
Glomeromycota/crescimento & desenvolvimento , Micélio/crescimento & desenvolvimento , Petroselinum/microbiologia , Solanum melongena/microbiologia , Glomeromycota/fisiologia , Micorrizas/crescimento & desenvolvimento , Micorrizas/fisiologia , Petroselinum/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Solanum melongena/fisiologia , Simbiose
16.
Sci Rep ; 11(1): 13426, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183734

RESUMO

Positive effects of arbuscular mycorrhizal fungi (AMF)-wheat plant symbiosis have been well discussed by research, while the actual role of the single wheat genotype in establishing this type of association is still poorly investigated. In this work, the genetic diversity of Triticum turgidum wheats was exploited to detect roots susceptibility to AMF and to identify genetic markers in linkage with chromosome regions involved in this symbiosis. A tetraploid wheat collection of 127 accessions was genotyped using 35K single-nucleotide polymorphism (SNP) array and inoculated with the AMF species Funneliformis mosseae (F. mosseae) and Rhizoglomus irregulare (R. irregulare), and a genome-wide association study (GWAS) was conducted. Six clusters of genetically related accessions were identified, showing a different mycorrhizal colonization among them. GWAS revealed four significant quantitative trait nucleotides (QTNs) involved in mycorrhizal symbiosis, located on chromosomes 1A, 2A, 2B and 6A. The results of this work enrich future breeding activities aimed at developing new grains on the basis of genetic diversity on low or high susceptibility to mycorrhization, and, possibly, maximizing the symbiotic effects.


Assuntos
Genes de Plantas , Micorrizas/fisiologia , Simbiose/genética , Triticum/genética , Fungos/fisiologia , Variação Genética , Estudo de Associação Genômica Ampla , Filogenia , Melhoramento Vegetal , Raízes de Plantas/microbiologia , Brotos de Planta/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tetraploidia , Triticum/microbiologia
17.
Methods Mol Biol ; 2146: 33-41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32415593

RESUMO

An in vivo whole-plant bi-dimensional experimental system has been devised and tested with different host plants, in order to obtain extraradical mycelium (ERM) produced by different arbuscular mycorrhizal fungi (AMF). In this system, a host plant germling is inoculated with AMF to establish mycorrhizal symbiosis, and, after colonization, newly formed extraradical hyphae and spores are removed. Then the mycorrhizal root system is wrapped in a nylon net and placed between membranes in a Petri dish, allowing ERM to grow on the membrane surface. Such extraradical hyphae may be used for in situ morphometric analyses or collected for molecular or biochemical assays: in the latter case, the plant with its root sandwich may be reassembled to renew mycelium production. In this experimental system, which was tested with diverse host plant species and lines, values of explored membrane surface areas and densities of ERM showed wide ranges of variation, and its length ranged from 9.7 ± 2.0 to 48.8 ± 9.9 m per plant, depending on host and AMF identity. Across the different plant-AMF combinations tested, the whole-plant system produced 2.0 ± 0.6 to 5.3 ± 0.3 mg of ERM fresh biomass per plant per harvest. This experimental system can be used for a wide range of AMF and host plants species, either establishing arbuscular mycorrhizas or other mycorrhizal interactions. ERM produced and collected in the whole-plant system is suitable for morphological, physiological, and molecular analyses, facilitating studies on the different aspects of mycorrhizal symbiotic interactions.


Assuntos
Técnicas de Cultura/métodos , Micorrizas/crescimento & desenvolvimento , Simbiose/genética , Hifas/citologia , Hifas/crescimento & desenvolvimento , Micélio/genética , Micélio/crescimento & desenvolvimento , Micorrizas/citologia , Raízes de Plantas/microbiologia , Plantas/microbiologia
18.
FEMS Microbiol Lett ; 367(2)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32043113

RESUMO

Arbuscular mycorrhizal fungi (AMF) are a key group of beneficial obligate biotrophs, establishing a mutualistic symbiosis with the roots of most land plants. The molecular markers generally used for their characterization are mainly based on informative regions of nuclear rDNA (SSU-ITS-LSU), although protein-encoding genes have also been proposed. Within functional genes, those encoding for phosphate transporters (PT) are particularly important in AMF, given their primary ability to take up Pi from soil, and to differentially affect plant phosphate nutrition. In this work, we investigated the genetic diversity of PT1 gene sequences and sequences of the taxonomically relevant SSU-ITS-LSU region in two isolates of the species Funneliformis coronatus, three isolates of the species Funneliformis mosseae and two species of the genus Rhizoglomus, originated from geographically distant areas and cultured in vivo. Our results showed that partial PT1 sequences not only successfully differentiated AMF genera and species like ribosomal gene sequences but also highlighted intraspecific diversity among F. mosseae and F. coronatus isolates. The study of functional genes related to the uptake of key mineral nutrients for the assessment of AMF diversity represents a key step in the selection of efficient isolates to be used as inocula in sustainable agriculture.


Assuntos
Proteínas Fúngicas/genética , Fungos/genética , Micorrizas/genética , Proteínas de Transporte de Fosfato/genética , Proteínas Fúngicas/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Fungos/metabolismo , Micorrizas/classificação , Micorrizas/isolamento & purificação , Micorrizas/metabolismo , Variantes Farmacogenômicos , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas/metabolismo , Plantas/microbiologia , Microbiologia do Solo
19.
New Phytol ; 181(4): 924-937, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19140939

RESUMO

Arbuscular mycorrhizal fungi (AMF) form symbioses with the majority of plants and form extensive underground hyphal networks simultaneously connecting the roots of different plant species. No empirical evidence exists for either anastomosis between genetically different AMF or genetic exchange.Five isolates of one population of Glomus intraradices were used to study anastomosis between hyphae of germinating spores. We show that genetically distinct AMF, from the same field, anastomose, resulting in viable cytoplasmic connections through which genetic exchange could potentially occur.Pairs of genetically different isolates were then co-cultured in an in vitro system.Freshly produced spores were individually germinated to establish new cultures.Using several molecular tools, we show that genetic exchange occurred between genetically different AMF. Specific genetic markers from each parent were transmitted to the progeny. The progeny were viable, forming symbioses with plant roots. The phenotypes of some of the progeny were significantly different from either parent.Our results indicate that considerable promiscuity could occur in these fungi because nine out of 10 combinations of different isolates anastomosed. The ability to perform genetic crosses between AMF experimentally lays a foundation for understanding the genetics and evolutionary biology of these important plants symbionts.


Assuntos
Glomeromycota/genética , Cruzamentos Genéticos , Variações do Número de Cópias de DNA , Marcadores Genéticos , Genótipo , Glomeromycota/isolamento & purificação , Glomeromycota/fisiologia , Hifas/genética , Hifas/fisiologia , Micorrizas/genética , Micorrizas/isolamento & purificação , Micorrizas/fisiologia , Fenótipo , Filogenia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , RNA Ribossômico/genética , Simbiose/genética
20.
PLoS One ; 14(2): e0212371, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30779767

RESUMO

Retrotransposon expression during arbuscular mycorrhizal (AM) fungal colonisation of sunflower roots (Helianthus annuus) was analysed using Illumina RNA-Seq, in order to verify whether mycorrhizal symbiosis can activate retrotransposable elements. Illumina cDNA libraries were produced from RNAs isolated from the roots of sunflower plants at 4 and 16 days after inoculation with the AM fungus Rhizoglomus irregulare and from their respective control plants. Illumina reads were mapped to a library of reverse transcriptase-encoding sequences, putatively belonging to long terminal repeat retrotransposons of Gypsy and Copia superfamilies. Forty-six different reverse transcriptase sequences were transcribed, although at a low rate, in mycorrhizal or control roots and only four were significantly over-expressed at day 16, compared with control roots. Almost all expressed or over-expressed sequences belonged to low-copy elements, mostly, of the Copia superfamily. A meta-analysis, using publicly available Illumina cDNA libraries obtained from sunflower plants treated with different hormones and chemicals, mimicking stimuli produced by abiotic and biotic stresses, was also conducted. Such analyses indicated that the four reverse transcriptase sequences over-expressed in mycorrhizal roots were explicitly induced only by AM symbiosis, showing the specificity of AM stimuli compared to that of other fungal/plant interactions.


Assuntos
Helianthus/genética , Micorrizas/fisiologia , Retroelementos/genética , Hibridização Genômica Comparativa , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Raízes de Plantas/genética , RNA de Plantas/química , RNA de Plantas/isolamento & purificação , RNA de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA