Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Phys Chem Chem Phys ; 24(48): 29480-29494, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36448609

RESUMO

Microscopic-level understanding of the interaction of hydrocarbons with transition metal surfaces is an important prerequisite for rational design of new materials with improved catalytic properties. In this report, we present a mechanistic study on the keto-enol tautomerisation of butanal on Pd(111), which was theoretically predicted to play a crucial role in low-barrier hydrogenation of carbonyl compounds. These processes were addressed by a combination of reflection-absorption infrared spectroscopy, molecular beam techniques and theoretical calculations at the density functional theory level. Spectroscopic information obtained on Pd(111) suggests that butanal forms three different aldehyde species, which we indicate as A1-A3 as well as their enol counterpart E1. The electronically strongest perturbed and strongest binding species A1 is most likely related to the η2(C,O) adsorption configuration, in which both C and O atoms are involved in the bonding with the underlying metal. The species A2 weakly binds and is less electronically perturbed and can be associated with the η1(O) adsorption configuration. The third type of aldehyde species A3, which is nearly unperturbed and is found only at low temperatures, results from the formation of the butanal multilayer. Importantly, the enol form of butanal was observed on the surface, which gives rise to a new characteristic band at 1104 cm-1 related to the stretching vibration of the C-O single bond (ν(C-O)). With increasing temperature, the multi-layer related species A3 disappears from the surface above 136 K. The population of aldehyde species A1 and the enol species E1 noticeably increases with increasing temperature, while the band related to the aldehyde species A2 becomes strongly attenuated and finally completely disappears above 120 K. These observations suggest that species E1 and A1 are formed in an activated process and - in view of the strongly anti-correlated population of the species E1 and A2 - it can be concluded that enol species E1 is most likely formed from the weakly bound aldehyde species A2 (η1(O)). Finally, we discuss the possible routes to enol stabilization via intermolecular bonding and provide the possible structure of the enol-containing stabilized complex, which is compatible with all spectroscopic observations. The obtained results provide important insights into the process of keto-enol tautomerisation of simple carbonyl compounds.

2.
Chemistry ; 27(68): 17240-17254, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34608688

RESUMO

We present a mechanistic study on the formation of an active ligand layer over Pd(111), turning the catalytic surface highly active and selective in partial hydrogenation of an α,ß-unsaturated aldehyde acrolein. Specifically, we investigate the chemical composition of a ligand layer consisting of allyl cyanide deposited on Pd(111) and its dynamic changes under the hydrogenation conditions. On pristine surface, allyl cyanide largely retains its chemical structure and forms a layer of molecular species with the CN bond oriented nearly parallel to the underlying metal. In the presence of hydrogen, the chemical composition of allyl cyanide strongly changes. At 100 K, allyl cyanide transforms to unsaturated imine species, containing the C=C and C=N double bonds. At increasing temperatures, these species undergo two competing reaction pathways. First, the C=C bond become hydrogenated and the stable N-butylimine species are produced. In the competing pathway, the unsaturated imine reacts with hydrogen to fully hydrogenate the imine group and produce butylamine. The latter species are unstable under the hydrogenation reaction conditions and desorb from the surface, while the N-butylimine adsorbates formed in the first reaction pathway remain adsorbed and act as an active ligand layer in selective hydrogenation of acrolein.

3.
Angew Chem Int Ed Engl ; 60(30): 16349-16354, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34008906

RESUMO

We present a mechanistic study on the formation and dynamic changes of a ligand-based heterogeneous Pd catalyst for chemoselective hydrogenation of α,ß-unsaturated aldehyde acrolein. Deposition of allyl cyanide as a precursor of a ligand layer renders Pd highly active and close to 100 % selective toward propenol formation by promoting acrolein adsorption in a desired configuration via the C=O end. Employing a combination of real-space microscopic and in-operando spectroscopic surface-sensitive techniques, we show that an ordered active ligand layer is formed under operational conditions, consisting of stable N-butylimine species. In a competing process, unstable amine species evolve on the surface, which desorb in the course of the reaction. Obtained atomistic-level insights into the formation and dynamic evolution of the active ligand layer under operational conditions provide important input required for controlling chemoselectivity by purposeful surface functionalization.

4.
Phys Chem Chem Phys ; 22(27): 15696-15706, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32618972

RESUMO

A mechanistic study on interaction of a chiral modifier - (R)-(+)-1-(1-naphthylethylamine) (R-NEA) - with a single crystalline Pt(111) surface is reported. The details of the adsorption geometry of individual R-NEA molecules and their intermolecular interactions are addressed by combination of infrared reflection absorption spectroscopy (IRAS) and scanning tunneling microscopy (STM). The spectroscopic observations suggest that the molecules are tilted with respect to the underlying metal substrate with the long axis of the naphthyl ring being parallel and the short axis tilted with respect to the surface. In the medium coverage range, formation of directed 3-5 membered chains was observed by STM for the first time, which points to intermolecular bonding between individual molecules and might account for an unusual tilted adsorption geometry deduced from the IR spectra. Based on the STM images revealing the atomic structure of the Pt grid close to the R-NEA chains, we propose the adsorption configuration of NEA fitting both the IRAS and STM data. The obtained results suggest that this strong intermolecular interaction energetically stabilizes the tilted adsorption geometry of the naphthyl ring, which otherwise would be expected to lie flat on the metal to maximize the dispersive interactions. At the coverage close to saturation, R-NEA builds a self-assembled overlayer with hexagonal symmetry, exhibiting intermolecular distances larger than in the directed chains.

5.
Phys Chem Chem Phys ; 26(24): 16929-16930, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38845572
6.
Angew Chem Int Ed Engl ; 57(51): 16659-16664, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30311717

RESUMO

Tautomerisation of simple carbonyl compounds to their enol counterparts on metal surfaces is envisaged to enable an easier route for hydrogenation of the C=O bond in heterogeneously catalyzed reactions. To understand the mechanisms of enol formation and stabilization over catalytically active metal surfaces, we performed a mechanistic study on keto-enol tautomerization of a monocarbonyl compound acetophenon over Pt(111) surface. By employing infrared reflection adsorption spectroscopy in combination with scanning tunneling microscopy, we found that enol can be formed by building a ketone-enol dimer, in which one molecule in the enol form is stabilized through hydrogen bonding to the carbonyl group of the second ketone molecule. Based on the investigations of the co-adsorption behavior of acetophenone and hydrogen, we conclude that keto-enol tautomerization occurs in the intramolecular process and does not involve hydrogen transfer through the surface hypothesized previously.

7.
Phys Chem Chem Phys ; 19(6): 4231-4242, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28116388

RESUMO

Room temperature adsorption of carbon dioxide (CO2) on monocrystalline CaO(001) thin films grown on a Mo(001) substrate was studied by infrared reflection-absorption spectroscopy (IRAS) and quantum chemical calculations. For comparison, CO2 adsorption was examined on poorly ordered, nanoparticulate CaO films prepared on Ru(0001). For both systems, CO2 readily adsorbs on the clean CaO surface. However, additional bands were observable on the CaO/Ru(0001) films compared with CaO/Mo(001), because the stricter IRAS surface selection rules do not apply to adsorption on the disordered thin films grown on Ru(0001). Spectral evolution with increasing exposure of the IRA bands suggested the presence of several adsorption sites which are consecutively populated by CO2. Density functional calculations showed that CO2 adsorption occurs as monodentate surface carbonate (CO32-) species at monatomic step sites and other low-coordinated sites, followed by formation of carbonates on terraces, which dominate at increasing CO2 exposure. To explain the coverage-dependent IRAS results, we propose CO2 surface islanding from the onset, most likely in the form of pairs and other chain-like species, which were calculated as thermodynamically favorable. The calculated adsorption energy for isolated CO2 on the terrace sites (184 ± 10 kJ mol-1) is larger than the adsorption energy obtained by temperature programmed desorption (∼120-140 kJ mol-1) and heat of adsorption taken from microcalorimetry measurements at low coverage (∼125 kJ mol-1). However, the calculated adsorption energies become less favorable when carbonate chains intersect on CaO terraces, forming kinks. Furthermore, our assignments of the initial stages of CO2 adsorption are consistent with the observed coverage effect on the CO2 adsorption energy measured by microcalorimetry and the IRAS results.

8.
Acc Chem Res ; 48(10): 2775-82, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26366783

RESUMO

Heterogeneous catalysts are widely employed in technological applications, such as chemical manufacturing, energy harvesting, conversion and storage, and environmental technology. Often they consist of disperse metal nanoparticles anchored onto a morphologically complex oxide support. The compositional and structural complexity of such nanosized systems offers many degrees of freedom for tuning their catalytic performance. However, a rational design of heterogeneous catalysts based on an atomistic-level understanding of underlying surface processes has not been fully achieved so far and remains one of the primary goals for catalysis research. In our group, we developed concepts for replacing highly complex real supported catalysts by simplified model systems, which complexity can be gradually increased in order to mimic certain structural aspects of practically relevant catalysts in a controlled way. Well-defined model systems consisting of metal-nanoparticle ensembles supported on planar oxide substrates have proven to provide a successful approach to achieve fundamental insights into heterogeneous catalysis. In this Account, two mechanistic case studies focusing on an atomistic-level understanding of surface chemistry are presented in which we investigate how the nanoscopic nature of metal clusters affects their interaction with the adsorbates and the reactive processes. Particularly, we investigate the effects of the particle size and the flexibility of the atoms constituting metal clusters on the binding energy of gas-phase adsorbates, such as CO and oxygen. We identified two major structural factors determining the binding energy of gas phase adsorbates on metal nanoparticles: the local configuration of the adsorption site and the particle size. While the effect of the local configuration of the adsorption site was found to be adsorbate specific, the reduction of the cluster size results in a pronounced decrease of binding energy for both adsorbates and appears to be a general trend. In the second case study, we address the role of the surface modifiers, such as carbon, on the process of hydrogen diffusion into volume of Pd nanoparticles that was previously identified is an important step in hydrogenation chemistry. We provide for the first time direct experimental evidence that, inline with the recent theoretical predictions, the atomically flexible low-coordinated surface sites on Pd particles play a crucial role in the diffusion process and that their selective modification with carbon results in marked facilitation of subsurface hydrogen diffusion. By virtue of these examples, we demonstrate how model studies on complex nanostructured materials may provide an atomistic view of processes at the gas-solid interface related to heterogeneous catalysis.

9.
Chemistry ; 22(44): 15856-15863, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27621113

RESUMO

The selectivity in the hydrogenation of acrolein over Fe3 O4 -supported Pd nanoparticles has been investigated as a function of nanoparticle size in the 220-270 K temperature range. While Pd(111) shows nearly 100 % selectivity towards the desired hydrogenation of the C=O bond to produce propenol, Pd nanoparticles were found to be much less selective towards this product. In situ detection of surface species by using IR-reflection absorption spectroscopy shows that the selectivity towards propenol critically depends on the formation of an oxopropyl spectator species. While an overlayer of oxopropyl species is effectively formed on Pd(111) turning the surface highly selective for propenol formation, this process is strongly hindered on Pd nanoparticles by acrolein decomposition resulting in CO formation. We show that the extent of acrolein decomposition can be tuned by varying the particle size and the reaction temperature. As a result, significant production of propenol is observed over 12 nm Pd nanoparticles at 250 K, while smaller (4 and 7 nm) nanoparticles did not produce propenol at any of the temperatures investigated. The possible origin of particle-size dependence of propenol formation is discussed. This work demonstrates that the selectivity in the hydrogenation of acrolein is controlled by the relative rates of acrolein partial hydrogenation to oxopropyl surface species and of acrolein decomposition, which has significant implications for rational catalyst design.

10.
Phys Chem Chem Phys ; 18(20): 13960-73, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27149902

RESUMO

Atomistic-level understanding of the interaction of α,ß-unsaturated aldehydes and their derivatives with late transition metals is of fundamental importance for the rational design of new catalytic materials with the desired selectivity towards C[double bond, length as m-dash]C vs. C[double bond, length as m-dash]O bond partial hydrogenation. In this study, we investigate the interaction of acrolein, and its partial hydrogenation products propanal and allyl alcohol, with Pd(111) as a prototypical system. A combination of infrared reflection-absorption spectroscopy (IRAS) and temperature programmed desorption (TPD) experiments was applied under well-defined ultrahigh vacuum (UHV) conditions to obtain detailed information on the adsorption geometries of acrolein, propanal, and allyl alcohol as a function of coverage. We compare the IR spectra obtained for multilayer coverages, reflecting the molecular structure of unperturbed molecules, with the spectra acquired for sub-monolayer coverages, at which the chemical bonds of the molecules are strongly distorted. Coverage-dependent IR spectra of acrolein on Pd(111) point to the strong changes in the adsorption geometry with increasing acrolein coverage. Acrolein adsorbs with the C[double bond, length as m-dash]C and C[double bond, length as m-dash]O bonds lying parallel to the surface in the low coverage regime and changes its geometry to a more upright orientation with increasing coverage. TPD studies indicate decomposition of the species adsorbed in the sub-monolayer regime upon heating. Similar strong coverage dependence of the IR spectra were found for propanal and allyl alcohol. For all investigated molecules a detailed assignment of vibrational bands is reported.

11.
J Am Chem Soc ; 137(42): 13496-502, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26481220

RESUMO

We present a mechanistic study on selective hydrogenation of acrolein over model Pd surfaces--both single crystal Pd(111) and Pd nanoparticles supported on a model oxide support. We show for the first time that selective hydrogenation of the C═O bond in acrolein to form an unsaturated alcohol is possible over Pd(111) with nearly 100% selectivity. However, this process requires a very distinct modification of the Pd(111) surface with an overlayer of oxopropyl spectator species that are formed from acrolein during the initial stages of reaction and turn the metal surface selective toward propenol formation. By applying pulsed multimolecular beam experiments and in situ infrared reflection-absorption spectroscopy, we identified the chemical nature of the spectator and the reactive surface intermediate (propenoxy species) and experimentally followed the simultaneous evolution of the reactive intermediate on the surface and formation of the product in the gas phase.

12.
Phys Chem Chem Phys ; 17(35): 22726-35, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26256836

RESUMO

Imparting chirality to non-chiral metal surfaces by adsorption of chiral modifiers is a highly promising route to create effective heterogeneously catalyzed processes for the production of enantiopure pharmaceuticals. One of the major current challenges in heterogeneous chiral catalysis is the fundamental-level understanding of how such chirally-modified surfaces interact with chiral and prochiral molecules to induce their enantioselective transformations. Herein we report the first direct calorimetric measurement of the adsorption energy of chiral molecules onto well-defined chirally-modified surfaces. Two model modifiers 1-(1-naphthyl)ethylamine and 2-methylbutanoic acid were used to impart chirality to Pt(111) and their interaction with propylene oxide was investigated by means of single-crystal adsorption calorimetry. Differential adsorption energies and absolute surface uptakes were obtained for the R- and S-enantiomers of propylene oxide under clean ultrahigh vacuum conditions. Two types of adsorption behavior were observed for different chiral modifiers, pointing to different mechanisms of imparting chirality to metal surfaces. The results are analyzed and discussed in view of previously reported stereoselectivity of adsorption processes.


Assuntos
Butiratos/química , Etilaminas/química , Naftalenos/química , Platina/química , Adsorção , Calorimetria , Conformação Molecular , Estereoisomerismo , Propriedades de Superfície
13.
Angew Chem Int Ed Engl ; 54(47): 13942-6, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26457889

RESUMO

We present a mechanistic study on the interaction of water with a well-defined model Fe3O4(111) surface that was investigated by a combination of direct calorimetric measurements of adsorption energies, infrared vibrational spectroscopy, and calculations bases on density functional theory (DFT). We show that the adsorption energy of water (101 kJ mol(-1)) is considerably higher than all previously reported values obtained by indirect desorption-based methods. By employing (18)O-labeled water molecules and an Fe3 O4 substrate, we proved that the generally accepted simple model of water dissociation to form two individual OH groups per water molecule is not correct. DFT calculations suggest formation of a dimer, which consists of one water molecule dissociated into two OH groups and another non-dissociated water molecule creating a thermodynamically very stable dimer-like complex.

14.
Acc Chem Res ; 46(8): 1673-81, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23252628

RESUMO

Metallic nanoparticles finely dispersed over oxide supports have found use as heterogeneous catalysts in many industries including chemical manufacturing, energy-related applications and environmental remediation. The compositional and structural complexity of such nanosized systems offers many degrees of freedom for tuning their catalytic properties. However, fully rational design of heterogeneous catalysts based on an atomic-level understanding of surface processes remains an unattained goal in catalysis research. Researchers have used surface science methods and metal single crystals to explore elementary processes in heterogeneous catalysis. In this Account, we use more realistic materials that capture part of the complexity inherent to industrial catalysts. We assess the impacts on the overall catalytic performance of characteristics such as finite particle size, particle structure, particle chemical composition, flexibility of atoms in clusters, and metal-support interactions. To prepare these materials, we grew thin oxide films on metal single crystals under ultrahigh vacuum conditions and used these films as supports for metallic nanoparticles. We present four case studies on specifically designed materials with properties that expand our atomic-level understanding of surface chemistry. Specifically, we address (1) the effect of dopants in the oxide support on the growth of metal nanoclusters; (2) the effects of size and structural flexibility of metal clusters on the binding energy of gas-phase adsorbates and their catalytic activity; (3) the role of surface modifiers, such as carbon, on catalytic activity and selectivity; and (4) the structural and compositional changes of the active surface as a result of strong metal-support interaction. Using these examples, we demonstrate how studies of complex nanostructured materials can help revealing atomic processes at the solid-gas interface of heterogeneous catalysts. Among our findings is that doping of oxide materials opens promising routes to alter the morphology and electronic properties of supported metal particles and to induce the direct dissociation and reaction of molecules bound to the oxide surface. Also, the small size and atomic flexibility of metal clusters can have an important influence on gas adsorption and catalytic performance.

15.
Chem Rec ; 14(5): 759-74, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25155869

RESUMO

Single-crystal adsorption calorimetry (SCAC) measures the energetics of gas-surface interactions in a direct way and can be applied to a broad range of well-defined model surfaces. In this Personal Account we review some of the recent advances in understanding the interaction of gaseous molecules with single-crystal surfaces and well-defined supported metallic nanoparticles by this powerful technique. SCAC was applied on single-crystal surfaces to determine formation enthalpies of adsorbed molecular fragments typically formed during heterogeneously catalyzed reactions involving hydrocarbons. On supported metal nanoparticles, the binding energies of gaseous species were determined by SCAC as a function of the particle size. The reported data provide valuable information for ongoing research in many fields of heterogeneous catalysis and materials science. In addition, direct calorimetric measurements serve as benchmarks for the improvement of computational approaches to understanding surface chemistry.

16.
Angew Chem Int Ed Engl ; 53(49): 13371-5, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25294745

RESUMO

Heterogeneous catalysis is commonly governed by surface active sites. Yet, areas just below the surface can also influence catalytic activity, for instance, when fragmentation products of catalytic feeds penetrate into catalysts. In particular, H absorbed below the surface is required for certain hydrogenation reactions on metals. Herein, we show that a sufficient concentration of subsurface hydrogen, H(sub) , may either significantly increase or decrease the bond energy and the reactivity of the adsorbed hydrogen, H(ad) , depending on the metal. We predict a representative reaction, ethyl hydrogenation, to speed up on Pd and Pt, but to slow down on Ni and Rh in the presence of H(sub) , especially on metal nanoparticles. The identified effects of subsurface H on surface reactivity are indispensable for an atomistic understanding of hydrogenation processes on transition metals and interactions of hydrogen with metals in general.


Assuntos
Hidrogênio/química , Nanopartículas Metálicas/química , Elementos de Transição/química , Adsorção , Catálise , Hidrogenação , Metais/química , Modelos Moleculares , Propriedades de Superfície
17.
Chemistry ; 19(4): 1335-45, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23180515

RESUMO

Palladium is crucial for industry-related applications such as heterogeneous catalysis, energy production, and hydrogen technologies. In many processes, atomic H and C species are proposed to be present in the surface/near-surface area of Pd, thus noticeably affecting its chemical activity. This study provides a detail and unified view on the interactions of the H and C species with Pd nanoparticles (NPs), which is indispensable for insight into their catalytic properties. Density functional calculations of the interplay of C and H atoms at various concentrations and sites on suitable Pd NPs have been performed, accompanied by catalysis-relevant experiments on oxide-supported bare and C-modified Pd NPs. It is shown that on a Pd(79) NP a subsurface C atom destabilizes nearby atoms H at low coverage. Our experiments confirm that H atoms bind more weakly on C-containing Pd NPs than on C-free NPs. Various factors related to the presence of both H and C atoms on a Pd(79) surface, which may influence the penetration of H atoms from the surface into the subsurface area, have been investigated. Carbon atoms facilitate the subsurface penetration of atomic H both thermodynamically and kinetically when the surface is densely covered by H atoms. Moreover, subsurface H atoms are also energetically favored, even in the absence of C atoms, when several facets of the NP are covered by H atoms.

18.
Chemphyschem ; 14(8): 1686-95, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23585235

RESUMO

The mechanism of hydrogen recombination on a Pd(111) single crystal and well-defined Pd nanoparticles is studied using pulsed multi-molecular beam techniques and the H2/D2 isotope exchange reaction. The focus of this study is to obtain a microscopic understanding of the role of subsurface hydrogen in enhancing the associative desorption of molecular hydrogen. HD production from H2 and D2 over Pd is investigated using pulsed molecular beams, and the temperature dependence and reaction orders are obtained for the rate of HD production under various reaction conditions designed to modulate the amount of subsurface hydrogen present. The experimental data are compared to the results of kinetic modeling based on different mechanisms for hydrogen recombination. We found that under conditions where virtually no subsurface hydrogen species are present, the HD formation rate can be described exceptionally well by a classic Langmuir-Hinshelwood model. However, this model completely fails to reproduce the experimentally observed high HD formation rates and the reaction orders under reaction conditions where subsurface hydrogen is present. To analyze this phenomenon, we develop two kinetic models that account for the role of subsurface hydrogen. First, we investigate the possibility of a change in the reaction mechanism, where recombination of one subsurface and one surface hydrogen species (known as a breakthrough mechanism) becomes dominant when subsurface hydrogen is present. Second, we investigate the possibility of the modified Langmuir-Hinshelwood mechanism with subsurface hydrogen lowering the activation energy for recombination of two hydrogen species adsorbed on the surface. We show that the experimental reaction kinetics can be well described by both kinetic models based on non-Langmuir-Hinshelwood-type mechanisms.

19.
Nano Lett ; 12(4): 2134-9, 2012 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-22468882

RESUMO

With a density functional theory method, we studied computationally the size dependence of adsorption properties of metal nanoparticles for CO as a probe on Pd(n) clusters with n = 13-116 atoms. For large particles, the values slowly decrease with cluster size from the asymptotic value for an (ideal) infinite surface. For clusters of 13-25 atoms, starting well above the asymptotic value, the adsorption energies drop quite steeply with increasing cluster size. These opposite trends meet in an intermediate size range, for clusters of 30-50 atoms, yielding the lowest adsorption energies. These computational results help to resolve a controversy on the size-dependent behavior of adsorption energies of metal nanoparticles.

20.
Chemphyschem ; 12(1): 79-87, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21226183

RESUMO

We describe four new experimental techniques advanced during the last decade in the authors' laboratory. The techniques include photon scanning tunneling microscopy; aberration-corrected low-energy electron microscopy in combination with photoelectron emission microscopy, microcalorimetry, and electron-spin resonance spectroscopy. It is demonstrated how those techniques may be applied to solve fundamental problems in surface science with growing demands to tackle complex nanoscopic systems, and, in particular in catalysis science, which, without the availability of those techniques, would be difficult if not impossible to address.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA