Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nucleic Acids Res ; 50(2): 847-866, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34967415

RESUMO

The nucleotide messenger (p)ppGpp allows bacteria to adapt to fluctuating environments by reprogramming the transcriptome. Despite its well-recognized role in gene regulation, (p)ppGpp is only known to directly affect transcription in Proteobacteria by binding to the RNA polymerase. Here, we reveal a different mechanism of gene regulation by (p)ppGpp in Firmicutes: (p)ppGpp directly binds to the transcription factor PurR to downregulate purine biosynthesis gene expression upon amino acid starvation. We first identified PurR as a receptor of (p)ppGpp in Bacillus anthracis. A co-structure with Bacillus subtilis PurR reveals that (p)ppGpp binds to a PurR pocket reminiscent of the active site of phosphoribosyltransferase enzymes that has been repurposed to serve a purely regulatory role, where the effectors (p)ppGpp and PRPP compete to allosterically control transcription. PRPP inhibits PurR DNA binding to induce transcription of purine synthesis genes, whereas (p)ppGpp antagonizes PRPP to enhance PurR DNA binding and repress transcription. A (p)ppGpp-refractory purR mutant in B. subtilis fails to downregulate purine synthesis genes upon amino acid starvation. Our work establishes the precedent of (p)ppGpp as an effector of a classical transcription repressor and reveals the key function of (p)ppGpp in regulating nucleotide synthesis through gene regulation, from soil bacteria to pathogens.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Proteínas Repressoras/metabolismo , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica
2.
PLoS Genet ; 16(8): e1008987, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32853297

RESUMO

Replication-transcription conflicts promote mutagenesis and give rise to evolutionary signatures, with fundamental importance to genome stability ranging from bacteria to metastatic cancer cells. This review focuses on the interplay between replication-transcription conflicts and the evolution of gene directionality. In most bacteria, the majority of genes are encoded on the leading strand of replication such that their transcription is co-directional with the direction of DNA replication fork movement. This gene strand bias arises primarily due to negative selection against deleterious consequences of head-on replication-transcription conflict. However, many genes remain head-on. Can head-on orientation provide some benefit? We combine insights from both mechanistic and evolutionary studies, review published work, and analyze gene expression data to evaluate an emerging model that head-on genes are temporal targets for adaptive mutagenesis during stress. We highlight the alternative explanation that genes in the head-on orientation may simply be the result of genomic inversions and relaxed selection acting on nonessential genes. We seek to clarify how the mechanisms of replication-transcription conflict, in concert with other mutagenic mechanisms, balanced by natural selection, have shaped bacterial genome evolution.


Assuntos
Replicação do DNA/genética , Evolução Molecular , Seleção Genética/genética , Transcrição Gênica , Bactérias/genética , Genoma Bacteriano/genética
3.
Nucleic Acids Res ; 48(10): 5332-5348, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32324221

RESUMO

The genomes of organisms from all three domains of life harbor endogenous base modifications in the form of DNA methylation. In bacterial genomes, methylation occurs on adenosine and cytidine residues to include N6-methyladenine (m6A), 5-methylcytosine (m5C), and N4-methylcytosine (m4C). Bacterial DNA methylation has been well characterized in the context of restriction-modification (RM) systems, where methylation regulates DNA incision by the cognate restriction endonuclease. Relative to RM systems less is known about how m6A contributes to the epigenetic regulation of cellular functions in Gram-positive bacteria. Here, we characterize site-specific m6A modifications in the non-palindromic sequence GACGmAG within the genomes of Bacillus subtilis strains. We demonstrate that the yeeA gene is a methyltransferase responsible for the presence of m6A modifications. We show that methylation from YeeA does not function to limit DNA uptake during natural transformation. Instead, we identify a subset of promoters that contain the methylation consensus sequence and show that loss of methylation within promoter regions causes a decrease in reporter expression. Further, we identify a transcriptional repressor that preferentially binds an unmethylated promoter used in the reporter assays. With these results we suggest that m6A modifications in B. subtilis function to promote gene expression.


Assuntos
Adenosina/análogos & derivados , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Adenosina/análise , Adenosina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos , Metilação de DNA , Enzimas de Restrição-Modificação do DNA , Epigênese Genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , DNA Metiltransferases Sítio Específica (Adenina-Específica)/fisiologia , Fatores de Transcrição/metabolismo
4.
PLoS Genet ; 14(7): e1007512, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29979679

RESUMO

The DNA damage response is a signaling pathway found throughout biology. In many bacteria the DNA damage checkpoint is enforced by inducing expression of a small, membrane bound inhibitor that delays cell division providing time to repair damaged chromosomes. How cells promote checkpoint recovery after sensing successful repair is unknown. By using a high-throughput, forward genetic screen, we identified two unrelated proteases, YlbL and CtpA, that promote DNA damage checkpoint recovery in Bacillus subtilis. Deletion of both proteases leads to accumulation of the checkpoint protein YneA. We show that DNA damage sensitivity and increased cell elongation in protease mutants depends on yneA. Further, expression of YneA in protease mutants was sufficient to inhibit cell proliferation. Finally, we show that both proteases interact with YneA and that one of the two proteases, CtpA, directly cleaves YneA in vitro. With these results, we report the mechanism for DNA damage checkpoint recovery in bacteria that use membrane bound cell division inhibitors.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Endopeptidases/metabolismo , Proteínas de Bactérias/genética , Pontos de Checagem do Ciclo Celular/genética , Elementos de DNA Transponíveis/genética , DNA Bacteriano/genética , Endopeptidases/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteômica
5.
Crit Rev Biochem Mol Biol ; 53(1): 29-48, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29108429

RESUMO

Mutations in an organism's genome can arise spontaneously, that is, in the absence of exogenous stress and prior to selection. Mutations are often neutral or deleterious to individual fitness but can also provide genetic diversity driving evolution. Mutagenesis in bacteria contributes to the already serious and growing problem of antibiotic resistance. However, the negative impacts of spontaneous mutagenesis on human health are not limited to bacterial antibiotic resistance. Spontaneous mutations also underlie tumorigenesis and evolution of drug resistance. To better understand the causes of genetic change and how they may be manipulated in order to curb antibiotic resistance or the development of cancer, we must acquire a mechanistic understanding of the major sources of mutagenesis. Bacterial systems are particularly well-suited to studying mutagenesis because of their fast growth rate and the panoply of available experimental tools, but efforts to understand mutagenic mechanisms can be complicated by the experimental system employed. Here, we review our current understanding of mutagenic mechanisms in bacteria and describe the methods used to study mutagenesis in bacterial systems.


Assuntos
Bactérias/genética , Mutagênese , Animais , Carcinogênese/genética , Farmacorresistência Bacteriana , Humanos , Mutação , Acúmulo de Mutações
6.
Proc Natl Acad Sci U S A ; 114(44): 11733-11738, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078353

RESUMO

Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucleoside triphosphate (dNTP). Ribonucleotides represent a major threat to genome integrity with the potential to cause strand breaks. Furthermore, it has been shown in the bacterium Bacillus subtilis that loss of RER increases spontaneous mutagenesis. Despite the high rNTP error rate and the effect on genome integrity, the mechanism underlying mutagenesis in RER-deficient bacterial cells remains unknown. We performed mutation accumulation lines and genome-wide mutational profiling of B. subtilis lacking RNase HII, the enzyme that incises at single rNMP residues initiating RER. We show that loss of RER in B. subtilis causes strand- and sequence-context-dependent GC → AT transitions. Using purified proteins, we show that the replicative polymerase DnaE is mutagenic within the sequence context identified in RER-deficient cells. We also found that DnaE does not perform strand displacement synthesis. Given the use of nucleotide excision repair (NER) as a backup pathway for RER in RNase HII-deficient cells and the known mutagenic profile of DnaE, we propose that misincorporated ribonucleotides are removed by NER followed by error-prone resynthesis with DnaE.


Assuntos
Bacillus subtilis/genética , DNA Bacteriano/genética , Ribonucleotídeos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/fisiologia , Modelos Biológicos , Mutagênese , Mutação , Ribonuclease H/genética , Ribonuclease H/metabolismo
7.
Mol Microbiol ; 106(3): 335-350, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28795780

RESUMO

The most abundant oxidants controlling bacterial colonization on mucosal barrier epithelia are hypochlorous acid (HOCl), hypobromous acid (HOBr) and hypothiocyanous acid (HOSCN). All three oxidants are highly antimicrobial but little is known about their relative efficacies, their respective cellular targets, or what specific responses they elicit in bacteria. To address these important questions, we directly tested the individual oxidants on the virulent Pseudomonas aeruginosa strain PA14. We discovered that HOCl and HOBr work almost interchangeably, impacting non-growing bacterial cultures more significantly than actively growing bacteria, and eliciting similar stress responses, including the heat shock response. HOSCN treatment is distinctly different, affecting primarily actively growing PA14 and evoking stress responses suggestive of membrane damage. What all three oxidants have in common, however, is their ability to cause substantial protein aggregation. This effect became particularly obvious in strains lacking polyphosphate, a newly recognized chemical chaperone. Treatment of PA14 with the FDA-approved anti-inflammatory drug mesalamine, which has recently been shown to attenuate polyP production in a wide range of bacteria, effectively decreased the resistance of PA14 toward all three oxidants, suggesting that we have discovered a novel, targetable defense system in P. aeruginosa.


Assuntos
Oxidantes/metabolismo , Pseudomonas aeruginosa/metabolismo , Antibacterianos , Anti-Infecciosos , Bactérias/metabolismo , Bromatos/metabolismo , Ácido Hipocloroso/metabolismo , Tiocianatos/metabolismo
8.
Proc Natl Acad Sci U S A ; 112(50): E6898-906, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26575623

RESUMO

MutS is responsible for initiating the correction of DNA replication errors. To understand how MutS searches for and identifies rare base-pair mismatches, we characterized the dynamic movement of MutS and the replisome in real time using superresolution microscopy and single-molecule tracking in living cells. We report that MutS dynamics are heterogeneous in cells, with one MutS population exploring the nucleoid rapidly, while another MutS population moves to and transiently dwells at the replisome region, even in the absence of appreciable mismatch formation. Analysis of MutS motion shows that the speed of MutS is correlated with its separation distance from the replisome and that MutS motion slows when it enters the replisome region. We also show that mismatch detection increases MutS speed, supporting the model for MutS sliding clamp formation after mismatch recognition. Using variants of MutS and the replication processivity clamp to impair mismatch repair, we find that MutS dynamically moves to and from the replisome before mismatch binding to scan for errors. Furthermore, a block to DNA synthesis shows that MutS is only capable of binding mismatches near the replisome. It is well-established that MutS engages in an ATPase cycle, which is necessary for signaling downstream events. We show that a variant of MutS with a nucleotide binding defect is no longer capable of dynamic movement to and from the replisome, showing that proper nucleotide binding is critical for MutS to localize to the replisome in vivo. Our results provide mechanistic insight into the trafficking and movement of MutS in live cells as it searches for mismatches.


Assuntos
Bacillus subtilis/fisiologia , Pareamento Incorreto de Bases , Reparo do DNA , Proteína MutS de Ligação de DNA com Erro de Pareamento/fisiologia , Análise de Célula Única , Bacillus subtilis/genética , Replicação do DNA , DNA Bacteriano
9.
Crit Rev Biochem Mol Biol ; 50(3): 181-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25387798

RESUMO

In all living cells, DNA is the storage medium for genetic information. Being quite stable, DNA is well-suited for its role in storage and propagation of information, but RNA is also covalently included in DNA through various mechanisms. Recent studies also demonstrate useful aspects of including ribonucleotides in the genome during repair. Therefore, our understanding of the consequences of RNA inclusion into bacterial genomic DNA is just beginning, but with its high frequency of occurrence the consequences and potential benefits are likely to be numerous and diverse. In this review, we discuss the processes that cause ribonucleotide inclusion in genomic DNA, the pathways important for ribonucleotide removal and the consequences that arise should ribonucleotides remain nested in genomic DNA.


Assuntos
Reparo do DNA , Replicação do DNA , DNA Bacteriano/química , Escherichia coli/metabolismo , Ribonucleotídeos/metabolismo , Bacillus subtilis/metabolismo , DNA Polimerase I/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/enzimologia
10.
J Bacteriol ; 199(1)2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27672193

RESUMO

Few discoveries have been more transformative to the biological sciences than the development of DNA sequencing technologies. The rapid advancement of sequencing and bioinformatics tools has revolutionized bacterial genetics, deepening our understanding of model and clinically relevant organisms. Although application of newer sequencing technologies to studies in bacterial genetics is increasing, the implementation of DNA sequencing technologies and development of the bioinformatics tools required for analyzing the large data sets generated remain a challenge for many. In this minireview, we have chosen to summarize three sequencing approaches that are particularly useful for bacterial genetics. We provide resources for scientists new to and interested in their application. Here, we discuss the analysis of data from transposon mutagenesis followed by deep sequencing (Tn-seq) to determine gene disruptions differentially represented in a mutant population and Illumina sequencing for identification of suppressor or other mutations, and we summarize single-molecule real-time (SMRT) sequencing for de novo genome assembly and the use of the output data for detection of DNA base modifications.


Assuntos
Bactérias/genética , DNA Bacteriano/genética , Técnicas de Amplificação de Ácido Nucleico , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Mutação
11.
Biophys J ; 111(12): 2562-2569, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-28002733

RESUMO

PolC is one of two essential replicative DNA polymerases found in the Gram-positive bacterium Bacillus subtilis. The B. subtilis replisome is eukaryotic-like in that it relies on a two DNA polymerase system for chromosomal replication. To quantitatively image how the replicative DNA polymerase PolC functions in B. subtilis, we applied photobleaching-assisted microscopy, three-dimensional superresolution imaging, and single-particle tracking to examine the in vivo behavior of PolC at single-molecule resolution. We report the stoichiometry of PolC proteins within each cell and within each replisome, we elucidate the diffusion characteristics of individual PolC molecules, and we quantify the exchange dynamics for PolC engaged in lagging strand synthesis. We show that PolC is highly dynamic: this DNA polymerase is constantly recruited to and released from a centrally located replisome, providing, to our knowledge, new insight into the organization and dynamics of the replisome in bacterial cells.


Assuntos
Bacillus subtilis/citologia , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Bacillus subtilis/genética , Sobrevivência Celular , Difusão , Transporte Proteico
12.
Proc Natl Acad Sci U S A ; 110(32): 12942-7, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23882084

RESUMO

The concentration of ribonucleoside triphosphates (rNTPs) in cells is far greater than the concentration of deoxyribonucleoside triphosphates (dNTPs), and this pool imbalance presents a challenge for DNA polymerases (Pols) to select their proper substrate. This report examines the effect of nucleotide pool imbalance on the rate and fidelity of the Escherichia coli replisome. We find that rNTPs decrease replication fork rate by competing with dNTPs at the active site of the C-family Pol III replicase at a step that does not require correct base-pairing. The effect of rNTPs on Pol rate generalizes to B-family eukaryotic replicases, Pols δ and ε. Imbalance of the dNTP pool also slows the replisome and thus is not specific to rNTPs. We observe a measurable frequency of rNMP incorporation that predicts one rNTP incorporated every 2.3 kb during chromosome replication. Given the frequency of rNMP incorporation, the repair of rNMPs is likely rapid. RNase HII nicks DNA at single rNMP residues to initiate replacement with dNMP. Considering that rNMPs will mark the new strand, RNase HII may direct strand-specificity for mismatch repair (MMR). How the newly synthesized strand is recognized for MMR is uncertain in eukaryotes and most bacteria, which lack a methyl-directed nicking system. Here we demonstrate that Bacillus subtilis incorporates rNMPs in vivo, that RNase HII plays a role in their removal, and the RNase HII gene deletion enhances mutagenesis, suggesting a possible role of incorporated rNMPs in MMR.


Assuntos
Replicação do DNA , Desoxirribonucleotídeos/genética , Escherichia coli/genética , Ribonucleotídeos/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Ligação Competitiva , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Reparo do DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Desoxirribonucleotídeos/metabolismo , Eletroforese em Gel de Ágar , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Genéticos , Mutação , Ligação Proteica , Ribonuclease H/genética , Ribonuclease H/metabolismo , Ribonucleotídeos/metabolismo
13.
J Bacteriol ; 196(7): 1359-68, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24443534

RESUMO

DNA helicases have important roles in genome maintenance. The RecD helicase has been well studied as a component of the heterotrimeric RecBCD helicase-nuclease enzyme important for double-strand break repair in Escherichia coli. Interestingly, many bacteria lack RecBC and instead contain a RecD2 helicase, which is not known to function as part of a larger complex. Depending on the organism studied, RecD2 has been shown to provide resistance to a broad range of DNA-damaging agents while also contributing to mismatch repair (MMR). Here we investigated the importance of Bacillus subtilis RecD2 helicase to genome integrity. We show that deletion of recD2 confers a modest increase in the spontaneous mutation rate and that the mutational signature in ΔrecD2 cells is not consistent with an MMR defect, indicating a new function for RecD2 in B. subtilis. To further characterize the role of RecD2, we tested the deletion strain for sensitivity to DNA-damaging agents. We found that loss of RecD2 in B. subtilis sensitized cells to several DNA-damaging agents that can block or impair replication fork movement. Measurement of replication fork progression in vivo showed that forks collapse more frequently in ΔrecD2 cells, supporting the hypothesis that RecD2 is important for normal replication fork progression. Biochemical characterization of B. subtilis RecD2 showed that it is a 5'-3' helicase and that it directly binds single-stranded DNA binding protein. Together, our results highlight novel roles for RecD2 in DNA replication which help to maintain replication fork integrity during normal growth and when forks encounter DNA damage.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Replicação do DNA , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Sequência de Bases , Dano ao DNA , DNA Helicases/genética , Viabilidade Microbiana , Dados de Sequência Molecular , Mutação
14.
J Bacteriol ; 196(15): 2851-60, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24891441

RESUMO

RecA is central to maintaining genome integrity in bacterial cells. Despite the near-ubiquitous conservation of RecA in eubacteria, the pathways that facilitate RecA loading and repair center assembly have remained poorly understood in Bacillus subtilis. Here, we show that RecA rapidly colocalizes with the DNA polymerase complex (replisome) immediately following DNA damage or damage-independent replication fork arrest. In Escherichia coli, the RecFOR and RecBCD pathways serve to load RecA and the choice between these two pathways depends on the type of damage under repair. We found in B. subtilis that the rapid localization of RecA to repair centers is strictly dependent on RecO and RecR in response to all types of damage examined, including a site-specific double-stranded break and damage-independent replication fork arrest. Furthermore, we provide evidence that, although RecF is not required for RecA repair center formation in vivo, RecF does increase the efficiency of repair center assembly, suggesting that RecF may influence the initial stages of RecA nucleation or filament extension. We further identify single-stranded DNA binding protein (SSB) as an additional component important for RecA repair center assembly. Truncation of the SSB C terminus impairs the ability of B. subtilis to form repair centers in response to damage and damage-independent fork arrest. With these results, we conclude that the SSB-dependent recruitment of RecOR to the replisome is necessary for loading and organizing RecA into repair centers in response to DNA damage and replication fork arrest.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Replicação do DNA/efeitos dos fármacos , DNA Bacteriano/genética , Uracila/análogos & derivados , Bacillus subtilis/citologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Dano ao DNA , Reparo do DNA , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fluorescência Verde , Mutação , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Proteínas Recombinantes de Fusão , Uracila/farmacologia
15.
J Mol Biol ; 436(17): 168567, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583516

RESUMO

A pervasive question in biological research studying gene regulation, chromatin structure, or genomics is where, and to what extent, does a signal of interest arise genome-wide? This question is addressed using a variety of methods relying on high-throughput sequencing data as their final output, including ChIP-seq for protein-DNA interactions,1 GapR-seq for measuring supercoiling,2 and HBD-seq or DRIP-seq for R-loop positioning.3,4 Current computational methods to calculate genome-wide enrichment of the signal of interest usually do not properly handle the count-based nature of sequencing data, they often do not make use of the local correlation structure of sequencing data, and they do not apply any regularization of enrichment estimates. This can result in unrealistic estimates of the true underlying biological enrichment of interest, unrealistically low estimates of confidence in point estimates of enrichment (or no estimates of confidence at all), unrealistic gyrations in enrichment estimates at very close (<10 bp) genomic loci due to noise inherent in sequencing data, and in a multiple-hypothesis testing problem during interpretation of genome-wide enrichment estimates. We developed a tool called Enricherator to infer genome-wide enrichments from sequencing count data. Enricherator uses the variational Bayes algorithm to fit a generalized linear model to sequencing count data and to sample from the approximate posterior distribution of enrichment estimates (https://github.com/jwschroeder3/enricherator). Enrichments inferred by Enricherator more precisely identify known binding sites in cases where low coverage between binding sites leads to false-positive peak calls in these noisy regions of the genome; these benefits extend to published datasets.


Assuntos
Teorema de Bayes , Sequenciamento de Nucleotídeos em Larga Escala , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Genômica/métodos , Algoritmos , Biologia Computacional/métodos , Software , Análise de Sequência de DNA/métodos , Sequenciamento de Cromatina por Imunoprecipitação/métodos
16.
bioRxiv ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39257796

RESUMO

The signaling molecule cyclic di-GMP (cdG) controls the switch between bacterial motility and biofilm production, and fluctuations in cellular levels of cdG have been implicated in Vibrio cholerae pathogenesis. Intracellular concentrations of cdG are controlled by the interplay of diguanylate cyclase (DGC) enzymes, which synthesize cdG to promote biofilms, and phosphodiesterase (PDE) enzymes, which hydrolyse cdG to drive motility. To track the complete regulatory logic of how V. cholerae responds to changing cdG levels, we followed a timecourse of overexpression of either the V. harveyi diguanylate cyclase QrgB or a variant of QrgB lacking catalytic activity (QrgB*). We find that QrgB increases cdG levels relative to QrgB* for 30 minutes after overexpression, but the effect of QrgB on cdG levels plateaus at 30 minutes, indicating tight adaptive control of cdG levels. In contrast, loss of VpsR, a master regulator activating biofilm formation upon binding to cdG, leads to higher baseline levels of cdG and continuously increasing cdG through 60 minutes after QrgB induction, revealing the existence of a negative feedback loop on cdG levels operating through VpsR. Through a combination of RNA polymerase ChIP-seq, RNA-seq, and genetic approaches, we show that transcription of a gene encoding a PDE, cdgC, is activated by VpsR at high cdG concentrations, mediating this negative feedback on cdG levels. We further identify a transcript encoded within, and antisense to, the cdgC open reading frame which we name sRNA negative regulator of CdgC (SnrC). RNA polymerase ChIP-seq and RNA-seq demonstrate SnrC to be expressed specifically under conditions of high cdG in the absence of VpsR. Ectopic SnrC expression increases cdG levels in a manner dependent on CdgC, demonstrating that its effect on cdG levels is likely through interference with CdgC production. Further, although cells lacking cdgC exhibit enhanced biofilm formation, these mutants are outcompeted by wild type V. cholerae in colonization assays that reward a combination of attachment, dispersal, and motility behaviors. These results underscore the importance of negative feedback regulation of cdG to maintain appropriate homeostatic levels for efficient transitioning between biofilm formation and motility, both of which are necessary over the course of the V. cholerae infection cycle.

17.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066401

RESUMO

Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely-used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning based segmentation, "what you put is what you get" (WYPIWYG) - i.e., pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother-machine-based high-throughput imaging and analysis methods in their research.

18.
Cell Rep ; 42(11): 113451, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37980570

RESUMO

Misfolded endoplasmic reticulum (ER) proteins are degraded through a process called ER-associated degradation (ERAD). Soluble, lumenal ERAD targets are recognized, retrotranslocated across the ER membrane, ubiquitinated, extracted from the membrane, and degraded by the proteasome using an ERAD pathway containing a ubiquitin ligase called Hrd1. To determine how Hrd1 mediates these processes, we developed a deep mutational scanning approach to identify residues involved in Hrd1 function, including those exclusively required for lumenal degradation. We identify several regions required for different Hrd1 functions. Most surprisingly, we find two cytosolic regions of Hrd1 required for lumenal ERAD substrate degradation. Using in vivo and in vitro approaches, we define roles for disordered regions between structural elements that are required for Hrd1 autoubiquitination and substrate interaction. Our results demonstrate that disordered cytosolic regions promote substrate retrotranslocation by controlling Hrd1 activation and establishing directionality of retrotranslocation for lumenal substrate across the ER membrane.


Assuntos
Proteínas , Ubiquitina-Proteína Ligases , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas/metabolismo , Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Ubiquitina/metabolismo
19.
Sci Adv ; 9(30): eadi5945, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37494439

RESUMO

RNA:DNA hybrids compromise replication fork progression and genome integrity in all cells. The overall impacts of naturally occurring RNA:DNA hybrids on genome integrity, and the relative contributions of ribonucleases H to mitigating the negative effects of hybrids, remain unknown. Here, we investigate the contributions of RNases HII (RnhB) and HIII (RnhC) to hybrid removal, DNA replication, and mutagenesis genome wide. Deletion of either rnhB or rnhC triggers RNA:DNA hybrid accumulation but with distinct patterns of mutagenesis and hybrid accumulation. Across all cells, hybrids accumulate strongly in noncoding RNAs and 5'-UTRs of coding sequences. For ΔrnhB, hybrids accumulate preferentially in untranslated regions and early in coding sequences. We show that hybrid accumulation is particularly sensitive to gene expression in ΔrnhC cells. DNA replication in ΔrnhC cells is disrupted, leading to transversions and structural variation. Our results resolve the outstanding question of how hybrids in native genomic contexts cause mutagenesis and shape genome organization.


Assuntos
Proteínas de Bactérias , RNA , RNA/genética , Proteínas de Bactérias/metabolismo , Ribonucleases/química , Ribonucleases/genética , Ribonucleases/metabolismo , Mutagênese , DNA/genética , DNA/metabolismo , Replicação do DNA/genética , Ribonuclease H/genética , Ribonuclease H/química , Ribonuclease H/metabolismo
20.
bioRxiv ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37214986

RESUMO

RNA:DNA hybrids such as R-loops affect genome integrity and DNA replication fork progression. The overall impacts of naturally occurring RNA:DNA hybrids on genome integrity, and the relative contributions of ribonucleases H to mitigating the negative effects of hybrids, remain unknown. Here, we investigate the contributions of RNases HII (RnhB) and HIII (RnhC) to hybrid removal, DNA replication, and mutagenesis genome-wide. Deletion of either rnhB or rnhC triggers RNA:DNA hybrid accumulation, but with distinct patterns of mutagenesis and hybrid accumulation. Across all cells, hybrids accumulate most strongly in non-coding RNAs and 5'-UTRs of coding sequences. For Δ rnhB , hybrids accumulate preferentially in untranslated regions and early in coding sequences. Hybrid accumulation is particularly sensitive to gene expression in Δ rnhC ; in cells lacking RnhC, DNA replication is disrupted leading to transversions and structural variation. Our results resolve the outstanding question of how hybrids in native genomic contexts interact with replication to cause mutagenesis and shape genome organization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA