Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Rev ; 124(5): 2327-2351, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38408312

RESUMO

Polyethylene deconstruction to reusable smaller molecules is hindered by the chemical inertness of its hydrocarbon chains. Pyrolysis and related approaches commonly require high temperatures, are energy-intensive, and yield mixtures of multiple classes of compounds. Selective cleavage reactions under mild conditions (

2.
ACS Sustain Chem Eng ; 12(16): 6281-6288, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38665800

RESUMO

The cross-linked nature of vulcanized rubbers as used in tire and many other applications prohibits an effective closed-loop mechanical or chemical recycling. Moreover, vulcanization significantly retards the material's biodegradation. Here, we report a recyclable and biodegradable rubber that is generated by the vulcanization of amorphous, unsaturated polyesters. The elastic material can be broken down via solvolysis into the underlying monomers. After removal of the vulcanized repeat units, the saturated monomers, constituting the major share of the material, can be recovered in overall recycling rates exceeding 90%. Respirometric biodegradation experiments by 13CO2 tracking under environmental conditions via the polyesters' diol monomer indicated depolymerization and partial mineralization of the vulcanized polyester rubbers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA