Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Craniomaxillofac Surg ; 52(1): 127-135, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129185

RESUMO

The study aimed to analyze bone regeneration in critical-size defects using hybrid scaffolds biomechanically adapted to the specific defect and adding the growth factor rhBMP-2. For this animal study, ten minipigs underwent bilateral defects in the corpus mandibulae and were subsequently treated with novel cylindrical hybrid scaffolds. These scaffolds were designed digitally to suit the biomechanical requirements of the mandibular defect, utilizing finite element analysis. The scaffolds comprised zirconium dioxide-tricalcium phosphate (ZrO2-TCP) support struts and TCP foam ceramics. One scaffold in each animal was loaded with rhBMP-2 (100 µg/cm³), while the other served as an unloaded negative control. Fluorescent dyes were administered every 2 weeks, and computed tomography (CT) scans were conducted every 4 weeks. Euthanasia was performed after 3 months, and samples were collected for examination using micro-CT and histological evaluation of both hard and soft tissue. Intravital CT examinations revealed minor changes in radiographic density from 4 to 12 weeks postoperatively. In the group treated with rhBMP-2, radiographic density shifted from 2513 ± 128 (mean ± SD) to 2606 ± 115 Hounsfield units (HU), while the group without rhBMP-2 showed a change from 2430 ± 131 to 2601 ± 67 HU. Prior to implantation, the radiological density of samples measured 1508 ± 30 mg HA/cm³, whereas post-mortem densities were 1346 ± 71 mg HA/cm³ in the rhBMP-2 group and 1282 ± 91 mg HA/cm³ in the control group (p = 0.045), as indicated by micro-CT measurements. The histological assessment demonstrated successful ossification in all specimens. The newly formed bone area proportion was significantly greater in the rhBMP-2 group (48 ± 10%) compared with the control group without rhBMP-2 (42 ± 9%, p = 0.03). The mean area proportion of remaining TCP foam was 23 ± 8% with rhBMP-2 and 24 ± 10% without rhBMP-2. Successful bone regeneration was accomplished by implanting hybrid scaffolds into critical-size mandibular defects. Loading these scaffolds with rhBMP-2 led to enhanced bone regeneration and a uniform distribution of new bone formation within the hybrid scaffolds. Further studies are required to determine the adaptability of hybrid scaffolds for larger and potentially segmental defects in the maxillofacial region.


Assuntos
Implantes Dentários , Suínos , Animais , Porco Miniatura , Regeneração Óssea , Mandíbula/diagnóstico por imagem , Mandíbula/cirurgia , Mandíbula/patologia , Proteína Morfogenética Óssea 2/uso terapêutico , Osteogênese , Fator de Crescimento Transformador beta/uso terapêutico , Alicerces Teciduais , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Fosfatos de Cálcio
2.
Materials (Basel) ; 16(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37241233

RESUMO

We propose the use of Optical Coherence Tomography (OCT) as a tool for the quality control of 3-D-printed ceramics. Test samples with premeditated defects, namely single- and two-component samples of zirconia, titania, and titanium suboxides, were printed by stereolithography-based DLP (Digital Light Processing) processes. The OCT tomograms obtained on the green samples showed the capability of the method to visualize variations in the layered structure of the samples as well as the presence of cracks and inclusions at depths up to 130 µm, as validated by SEM images. The structural information was visible in cross-sectional images as well as in plan-view images. The optical signal measured from the printed zirconia oxide and titanium oxide samples showed strong attenuation with depth and could be fit with an exponential decay curve. The variations of the decay parameter correlated very well with the presence of defects and material variation. When used as an imaging quantity, the decay parameter projects the position of the defects into 2-D (X,Y) coordinates. This procedure can be used in real time, it reduces the data volume up to 1000 times, and allows for faster subsequent data analysis and transfer. Tomograms were also obtained on sintered samples. The results showed that the method can detect changes in the optical properties of the green ceramics caused by sintering. Specifically, the zirconium oxide samples became more transparent to the light used, whereas the titanium suboxide samples became entirely opaque. In addition, the optical response of the sintered zirconium oxide showed variations within the imaged volume, indicating material density variations. The results presented in this study show that OCT provides sufficient structural information on 3-D-printed ceramics and can be used as an in-line tool for quality control.

3.
Materials (Basel) ; 15(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35591613

RESUMO

Advanced ceramics are recognized as key enabling materials possessing combinations of properties not achievable in other material classes. They provide very high thermal, chemical and mechanical resistance and typically exhibit lower densities than metals. These properties predestine ceramics for many different applications, especially those in space. Aerospike nozzles promise an increased performance compared to classic bell nozzles but are also inherently more complex to manufacture due to their shape. Additive manufacturing (AM) drastically simplifies or even enables the fabrication of very complex structures while minimizing the number of individual parts. The applicability of ceramic AM ("CerAMfacturing") on rocket engines and especially nozzles is consequently investigated in the frame of the "MACARONIS" project, a cooperation of the Institute of Aerospace Engineering at Technische Universität Dresden and the Fraunhofer Institute for Ceramic Technologies and Systems (IKTS) in Dresden. The goal is to develop novel filigree aerospike nozzles with 2.5 N and 10 N thrust. For this purpose, CerAM VPP (ceramic AM via Vat Photopolymerization) using photoreactive and highly particle-filled suspensions was utilized. This contribution gives an overview of the component development starting from CAD modeling, suspension development based on alumina AES-11C, heat treatment and investigation of the microstructure of the sintered components. It could be shown that modifying the suspension composition significantly reduced the formation of cracks during processing, resulting in defect-free filigree aerospike nozzles for application in space.

4.
Materials (Basel) ; 14(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064507

RESUMO

A recently developed multi-ceramic additive manufacturing process (multi-CAMP) and an appropriate device offer a multi-material approach by vat photopolymerization (VPP) of multi-functionalized ceramic components. However, this process is limited to ceramic powders with a certain translucency for visible light. Electrically conductive ceramic powders are therefore ruled out because of their light-absorbing behavior and dark color. The goal of the collaborative work described in the article was to develop a material combination for this multi-material approach of the additive vat photopolymerization method which allows for combining electrical conductivity and electrical insulation plus high mechanical strength in co-sintered ceramic components. As conductive component titanium suboxides are chosen, whereas zirconia forms the mechanically stable and insulation part. Since titanium suboxides cannot be used for vat photopolymerization due to their light-absorbing behavior, titania is used instead. After additive manufacturing, the two-component parts are co-sintered in a reducing atmosphere to transform the titania into its suboxides and, thus, attaining the desired property combination. The article describes the challenges of the co-processing of both materials due to the complex optical properties of titania. Furthermore, the article shows successfully co-sintered testing parts of the material combination of zirconia/titanium suboxide which are made by assembling single-material VPP components in the green state and subsequent common thermal treatment. The results of microstructural and interface investigations such as electrical measurements are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA